行为和感知的定性学习,QLAPThe Qualitative Learner of Action and Perception, QLAP |
|
课程网址: | http://videolectures.net/aaai2010_mugan_qlap/ |
主讲教师: | Benjamin Kuipers; Jonathan Mugan |
开课单位: | 德克萨斯大学 |
开课时间: | 2010-09-01 |
课程语种: | 英语 |
中文简介: | 本视频介绍了行为和感知的定性学习者QLAP。QLAP在连续环境中自动学习有用的状态抽象和一组层次操作。在QLAP学习是无人监督的。代理程序首先对世界进行非常广泛的离散化(它只能判断变量的值是增加还是减少)。使用这种离散化,QLAP创建一组预测模型。最初,这些模型并不十分可靠,但是对于每个模型,QLAP都可以找到新的离散化来改进它。这些新的离散化导致更多的模型创建感知循环,从而导致更精确的模型和更精细的离散化。然后将这些模型转换为一组层次操作。 |
课程简介: | This video presents an introduction to the Qualitative Learner of Action and Perception, QLAP. QLAP autonomously learns a useful state abstraction and a set of hierarchical actions in continuous environments. Learning in QLAP is unsupervised. The agent begins with a very broad discretization of the world (it can only tell if the values of variables are increasing or decreasing). Using this discretization, QLAP creates a set of predictive models. Initially, these models are not very reliable, but for each one QLAP can find new discretizations to improve it. These new discretizations lead to more models creating a perception loop that leads to more accurate models and a finer discretization. The models are then converted into a set of hierarchical actions. |
关 键 词: | 自主学习; 人工智能; 离散化 |
课程来源: | 视频讲座网 |
最后编审: | 2021-02-03:nkq |
阅读次数: | 47 |