通过计算参数化地图纤维学习离散朴素贝叶模型的参数Learning Parameters in Discrete Naive Bayes Models by Computing Fibers of the Parametrization map |
|
课程网址: | http://videolectures.net/aml08_auvray_lpdnbmcfpm/ |
主讲教师: | Vincent Auvray; Louis Wehenkel |
开课单位: | 列日大学 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 离散朴素贝叶斯模型通常是通过参数空间到概率分布空间的映射进行参数化定义的。首先,我们提出了两类算法,它们计算映射到满足某些技术假设的离散朴素贝叶斯分布的参数集。然后,利用这些结果,我们提出了两个参数学习算法系列,它们通过将数据集中观察到的相对频率分布投影到所考虑的离散Naive Bayes模型上进行操作。它们具有很好的收敛性,但是随着模型隐藏类的数量的增加,它们的计算复杂度增长得很快。 |
课程简介: | Discrete Naive Bayes models are usually defined parametrically with a map from a parameter space to a probability distribution space. First, we present two families of algorithms that compute the set of parameters mapped to a given discrete Naive Bayes distribution satisfying certain technical assumptions. Using these results, we then present two families of parameter learning algorithms that operate by projecting the distribution of observed relative frequencies in a dataset onto the discrete Naive Bayes model considered. They have nice convergence properties, but their computational complexity grows very quickly with the number of hidden classes of the model. |
关 键 词: | 贝叶斯理论; 概率; 模型 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-26:cwx |
阅读次数: | 37 |