图形的模式分析及生物信息学应用Pattern Analysis over Graphs, and Bioinformatics Applications |
|
课程网址: | http://videolectures.net/aop09_vert_paog/ |
主讲教师: | Jean-Philippe Vert |
开课单位: | 巴黎高科矿业学校 |
开课时间: | 2009-12-03 |
课程语种: | 英语 |
中文简介: | 1。图的分类和回归。概述:基于walk、子树等的正定图核,以及其他非P.D.相似函数(如图匹配),可用于比较图,并用核方法进行分类/回归。应用:化学定量构效分析,图像分类2。在回归或分类的背景下检测模式,用图作为特征的先验知识。概述:在高维向量的经典回归/分类问题中。通过使用可以从向量图中派生的先验来控制复杂性,以及如何将它们用作分类和回归的惩罚函数。这将覆盖扩散核和其他核的图形,融合套索,结构群套索。在生物信息学中的应用。 |
课程简介: | 1. Classification and regression over graphs. Overview: positive definite graph kernels based on walk, subtrees etc.., as well as other non p.d. similarity functions (eg from graph matching) that can be used to compare graphs and do classification/regression with kernel methods. Applications: QSAR in chemistry, image classification 2. Detecting patterns in the context of regression or classification with a graph as prior knowledge over the features. Overview: in a classical regression/classification problem over high-dimensional vectors. Control the complexity, by using priors that can be derived from the graph over the vectors, and how they can be used as penalty functions for classification and regression. This will cover diffusion kernels and other kernels over graphs, fused lasso, structured group lasso. Application in bioinformatics. |
关 键 词: | 生物信息学; 图论; 模式识别 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-19:lxf |
阅读次数: | 36 |