首页概率论
0


贝叶斯定理中机械模型的作用

The role of mechanistic models in Bayesian inference
课程网址: http://videolectures.net/bark08_cornford_trommibi/  
主讲教师: Dan Cornford
开课单位: 阿斯顿大学
开课时间: 2008-10-09
课程语种: 英语
中文简介:
我将概述机械模型或模拟器在定义贝叶斯推理环境中先验的作用。特别是,我将关注两个主要案例:1)基于过程的系统理解允许我们为系统构建一个随机模拟器-这转化为随机过程中的推理;2)现有(通常)确定性机械模型存在的地方-然后我们可以在Bayesia中模拟并正确处理。n种方式。我将特别注意模拟器和现实之间的关系,因为这是一个现实,通常被取样来生成模型中用于推理的观察结果。我将从模拟中概述想法,并展示我认为有待解决的挑战。这是与许多人的联合工作:亚历克西斯·布考瓦拉,袁申,迈克尔·夫雷塔斯,曼弗雷德·奥珀和许多其他在MUCM项目。
课程简介: I'll outline the role of mechanistic models, or simulators, in defining priors in a Bayesian inference setting. In particular I will focus on two main cases: 1) where process based understanding of the system allows us to construct a stochastic simulator for the system - which translates to inference in stochastic processes; 2) where an existing (typically) deterministic mechanistic model exists - which we can then emulate and treat 'correctly' in a Bayesian manner. I will pay special attention to the relation between the simulator and reality, since it is reality that typically is sampled to generate the observations used for inference in the model. I will outline ideas from emulation, and show the challenges I think remain to be solved. This is joint work with lots of people: Alexis Boukouvalas, Yuan Shen, Michael Vrettas, Manfred Opper and many others in the MUCM project.
关 键 词: 贝叶斯定理; 机械模型; 概率论
课程来源: 视频讲座网
最后编审: 2019-12-24:lxf
阅读次数: 54