0


随机图表GP回归的协方差函数和贝叶斯误差

Covariance functions and Bayes errors for GP regression on random graphs
课程网址: http://videolectures.net/bark08_sollich_cfabefgr/  
主讲教师: Peter Sollich
开课单位: 伦敦国王学院
开课时间: 2008-10-09
课程语种: 英语
中文简介:
我们考虑随机图节点上定义函数的gp学习。基于图上扩散过程的协方差函数具有一些反直觉的性质。特别是,在树型结构的图中,可以忽略循环(通常是随机生成的图),大相关长度尺度的明显的“配额”限制不会产生恒定的协方差函数。在第二部分中,我们研究了图上gp回归的贝叶斯误差,并研究了学习曲线如何取决于图的大小、图的连通性和训练实例的数量。与卡米尔·科蒂合作。
课程简介: We consider GP learning of functions defined on the nodes of a random graph. Covariance functions proposed for this scenario, based on diffusion processes on the graph, are shown to have some counter-intuitive properties. In particular, on graphs with tree-like structure where loops can be neglected (as is typically the case for randomly generated graphs), the "obvious" limit of a large correlation length scale does not produce a constant covariance function. In the second part, we look at Bayes errors for GP regression on graphs and study how the learning curves depend on the size of the graph, its connectivity, and the number of training examples. Joint work with Camille Coti.
关 键 词: 随即图表; 函数; 贝叶斯误差
课程来源: 视频讲座网
最后编审: 2019-12-17:lxf
阅读次数: 47