0


经济波动与统计物理学︰ 量化极为罕见和少得多罕见事件

Economic Fluctuations and Statistical Physics: Quantifying Extremely Rare and Much Less Rare Events
课程网址: http://videolectures.net/ccss09_stanley_efasp/  
主讲教师: Eugene Stanley
开课单位: 波士顿大学
开课时间: 2009-07-10
课程语种: 英语
中文简介:
最近对大量实证数据的分析表明,经典经济理论不仅失败于少数的离群值,而且还出现了各种可能大小的类似离群值。事实上,如果只分析一个小的数据集(比如104个数据点),那么异常值似乎会以“罕见事件”的形式出现,但是,当我们分析数量级更多的数据时(108个数据点!)我们发现数量级的异常值更多——因此忽略它们不是一个负责任的选择,研究它们的属性成为一个现实的目标。我们发现这些“异常值”的统计特性与日常波动的统计特性相同。例如,在双对数图中,一个柱状图给出了给定幅度x的波动数,表示从日常波动到极少数波动的幅度,概率仅为10减去8。我们将呈现的金融分析的两个统一原则是规模不变性和普遍性[R.N.Mantegna/HES,经济物理学导论:金融中的相关性和复杂性(剑桥大学出版社,2000年)]。尺度不变性不是关于代数方程而是关于函数方程的一个性质,函数方程的解不是数字而是函数形式-幂律。普遍性的关键理念是,相同的一套“比例律”在不同的市场和不同的时间段内保持不变。我们通过描述最近未发表的著作来证明扩展和普遍性的原则[Hes/T.Preis/J.J.Schneider“描述金融市场趋势转换过程的新法律”,已提交]。对于自然界中有趣的各种转换过程,底层复杂系统以高度不连续的方式以特定的“相变”点从一种状态突然转变为另一种状态。相变的例子从统计物理学中的磁学到生理学和宏观社会现象。金融市场波动的特点是,在非常短的时间范围内,从增加“微趋势”到减少“微趋势”,有许多突变,反之亦然。我们询问这些无处不在的交换过程是否具有类似于相变中的可量化特征,并发现在交换发生之前和之后事务之间时间间隔的显著无标度行为。我们将研究结果解释为与金融市场参与者的时间依赖性集体行为一致。我们通过对交易量波动进行并行分析来测试我们的结果的可能普遍性。
课程简介: Recent analysis of truly huge quantities of empirical data suggests that classic economic theories not only fail for a few outliers, but that there occur similar outliers of every possible size. In fact, if one analyzes only a small data set (say 104 data points), then outliers appear to occur as “rare events.” However, when we analyze orders of magnitude more data (108 data points!), we find orders of magnitude more outliers - so ignoring them is not a responsible option, and studying their properties becomes a realistic goal. We find that the statistical properties of these “outliers” are identical to the statistical properties of everyday fluctuations. For example, a histogram giving the number of fluctuations of a given magnitude x for fluctuations ranging in magnitude from everyday fluctuations to extremely rare fluctuations that occur with a probability of only 10−8 is a perfect straight line in a double-log plot. Two unifying principles that underlie much of the finance analysis we will present are scale invariance and universality [ R. N. Mantegna/HES, Introduction to Econophysics: Correlations & Complexity in Finance (Cambridge U. Press, 2000)]. Scale invariance is a property not about algebraic equations but rather about functional equations, which have as their solutions not numbers but rather functional forms - power laws. The key idea of universality is that the identical set of “scaling laws” hold across diverse markets, and over diverse time periods. We demonstrate the principles of scaling and universality by describing very recent unpublished work [HES/T. Preis/J. J. Schneider “New Laws Describing Trend Switching Processes in Financial Markets”, submitted]. For an intriguing variety of switching processes in nature, the underlying complex system abruptly changes at a specific “phase transition” point from one state to another in a highly discontinuous fashion. Examples of phase transitions range from magnetism in statistical physics to physiology and macroscopic social phenomena. Financial market fluctuations are characterized by many abrupt switchings on very short time scales from increasing “microtrends” to decreasing “microtrends”—and vice versa. We ask whether these ubiquitous switching processes have quantifiable features analogous to those present in phase transitions, and find striking scale-free behavior of the time intervals between transactions both before and after the switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of transaction volume fluctuations.
关 键 词: 统计物理学; 经济物理学; 计算机科学
课程来源: 视频讲座网
最后编审: 2019-12-07:lxf
阅读次数: 90