用于鲁棒立体声预估的马尔科夫连续随机场Continuous Markov Random Fields for Robust Stereo Estimation |
|
课程网址: | http://videolectures.net/eccv2012_yamaguchi_stereo/ |
主讲教师: | Laurent Itti; Koichiro Yamaguchi; Ramin Zabih |
开课单位: | 芝加哥丰田技术学院 |
开课时间: | 2012-11-12 |
课程语种: | 英语 |
中文简介: | 本文提出了一种新的倾斜平面模型,它既考虑了遮挡边界,又考虑了遮挡深度。我们将此问题表述为由连续(即倾斜三维平面)和离散(即遮挡边界)随机变量组成的混合MRF中的一个推论。这允许我们定义电位编码组成段之间边界的像素的所有权,以及电位编码物理上可能的连接。我们的方法在Middlebury高分辨率图像[1]和更具挑战性的Kitti数据集[2]上优于最先进的方法,同时比现有的倾斜平面MRF方法更有效,平均需要2分钟对高分辨率图像进行推理。 |
课程简介: | In this paper we present a novel slanted-plane model which reasons jointly about occlusion boundaries as well as depth. We formulate the problem as one of inference in a hybrid MRF composed of both continuous (i.e., slanted 3D planes) and discrete (i.e., occlusion boundaries) random variables. This allows us to define potentials encoding the ownership of the pixels that compose the boundary between segments, as well as potentials encoding which junctions are physically possible. Our approach outperforms the state-of-the-art on Middlebury high resolution imagery [1] as well as in the more challenging KITTI dataset [2], while being more efficient than existing slanted plane MRF methods, taking on average 2 minutes to perform inference on high resolution imagery. |
关 键 词: | 机器学习; 马尔科夫; 计算机应用 |
课程来源: | 视频讲座网 |
最后编审: | 2021-03-12:nkq |
阅读次数: | 55 |