生命科学知识发现:概述,案例研究,复杂性和经验教训Knowledge Discovery in Life Sciences: overview, case studies, complexities, and lessons learned |
|
课程网址: | http://videolectures.net/solomon_famili_knodis/ |
主讲教师: | Fazel Famili |
开课单位: | 加拿大国家研究委员会 |
开课时间: | 2008-07-05 |
课程语种: | 英语 |
中文简介: | 知识发现是从历史或实时数据中发现有用的、理想的、以前未知的知识的开发和应用策略的过程。应用于生物和生命科学的数据,知识发现过程将有助于各种研究和开发活动,例如:(i)研究数据质量,找出某些基因或实验可能出现的异常或可疑表达;(i i)根据时间序列或高通量基因组学概况,(iii)研究在各种实验条件下(如体外或体内研究)对治疗的基因反应,以及(iv)根据两个或两个以上类别的表达概况发现精确诊断/分类的模型。本演示由三部分组成。在第一部分中,我们概述了生物信息学领域的知识发现,并描述了我们在启动和管理涉及多个组的数据挖掘项目方面的经验。在本文的第二部分中,我们使用一些现有或新开发的方法描述了一些案例研究。这些都是真正的基因组数据集(从公共或私人来源获得)被用于诸如基因功能鉴定和基因反应分析等任务的情况。在本文的最后一部分中,我们将描述处理真实数据的复杂性和挑战,展示在典型数据挖掘应用程序中需要仔细理解的重要领域,并分享我们过去7年取得的一些经验。 |
课程简介: | Knowledge discovery is the process of developing and applying strategies to discover useful and ideally all previously unknown knowledge from historical or real-time data. Applied to biological and life sciences data, knowledge discovery processes will help in various research and development activities, such as (i) studying data quality for possible anomalous or questionable expressions of certain genes or experiments, (ii) identifying relationships between genes and their functions based on time-series or other high throughput genomics profiles, (iii) investigating gene responses to treatments under various experimental conditions such as in-vitro or in-vivo studies, and (iv) discovering models for accurate diagnosis/classifications based on expression profiles among two or more classes. This presentation consists of three parts. In part one, we provide an overview of knowledge discovery focusing on bioinformatics domain and describe the BioMine project where we share our experiences on initiating and managing a data mining project involving several groups. In part two of this talk, we describe a few of our case studies using some existing or newly developed methods. These are all cases in which real genomics data sets (obtained from public or private sources) have been used for tasks such as gene function identification and gene response analysis. In the last part of this talk, we will describe complexities and challenges in dealing with real data, demonstrate important areas that need to be carefully understood in a typical data mining application, and share some of our experiences gained over the past 7 years. |
关 键 词: | 生物学; 系统生物学; 计算机科学; 机器学习 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-12:yumf |
阅读次数: | 47 |