经典力学的计算方法12.620J / 6.946J / 8.351J Classical Mechanics: A Computational Approach |
|
课程网址: | http://ocw.mit.edu/courses/earth-atmospheric-and-planetary-scienc... |
主讲教师: | Gerald Sussman ; Jack Wisdom |
开课单位: | 麻省理工学院 |
开课时间: | 2008-01-01 |
课程语种: | 英语 |
中文简介: | 我们将学习经典力学的基本原理,现代的重点是相空间的定性结构。我们将利用计算的思想来精确地阐明力学原理。在计算框架中表达鼓励清晰的思维和积极的探索。我们将考虑以下主题:拉格朗日公式;作用、变分原理和运动方程;哈密顿原理;守恒量;刚体和顶部;哈密顿公式与正则方程;表面部分;混乱;正则变换和生成函数;刘维尔定理与庞加莱;积分不变量;庞卡定理和卡姆定理;不变曲线和cantori;非线性共振;共振重叠并向混沌过渡;混沌运动的性质。我们将用实际例子说明和支持这些观点。我们将广泛使用计算来捕获方法、模拟和符号分析。 |
课程简介: | We will study the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. We will use computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration. We will consider the following topics: the Lagrangian formulation; action, variational principles, and equations of motion; Hamilton's principle; conserved quantities; rigid bodies and tops; Hamiltonian formulation and canonical equations; surfaces of section; chaos; canonical transformations and generating functions; Liouville's theorem and Poincaré integral invariants; Poincaré-Birkhoff and KAM theorems; invariant curves and cantori; nonlinear resonances; resonance overlap and transition to chaos; properties of chaotic motion. Ideas will be illustrated and supported with physical examples. We will make extensive use of computing to capture methods, for simulation, and for symbolic analysis. |
关 键 词: | 经典力学; 计算经典力学; 经典力学的结构; 拉格朗日; 哈密顿原理 |
课程来源: | 信息不详。欢迎您在右侧留言补充。 |
最后编审: | 2018-06-13:刘燕飞(课程编辑志愿者) |
阅读次数: | 64 |