部分观察扩散的一些最新进展,MCMC方法MCMC schemes for partially observed diffusions - Some recent advances |
|
课程网址: | http://videolectures.net/aispds08_golighlty_mspod/ |
主讲教师: | Andrew Golightly |
开课单位: | 纽卡斯尔大学 |
开课时间: | 2008-08-05 |
课程语种: | 英语 |
中文简介: | 在离散时间观测到的任意非线性扩散过程的似然推理是有问题的,因为封闭形式转移密度很少是可处理的。一个广泛使用的解决方案是在每一对观测之间引入潜在的数据点,以便对真实跃迁密度进行足够精确的欧拉-丸山近似。近年来,利用马尔可夫链蒙特卡罗方法对潜在数据和模型参数的后验分布进行了采样;然而,天真的方案遇到了一个混合问题,随着增加的程度恶化。我们将考虑一些最近开发的MCMC方案,它们不会受到扩增量的不利影响。特别地,通过在驱动布朗运动的骨架上而不是在样本路径上采样参数,可以克服混合问题。该方法将通过估计一些有趣的系统生物模型扩散近似的参数来说明。 |
课程简介: | It is well known that likelihood inference for arbitrary nonlinear diffusion processes observed at discrete times is problematic since closed form transition densities are rarely tractable. One widely used solution involves the introduction of latent data points between every pair of observations to allow a sufficiently accurate Euler-Maruyama approximation of the true transition densities. In recent literature, Markov chain Monte Carlo (MCMC) methods have been used to sample the posterior distribution of latent data and model parameters; however, naive schemes suffer from a mixing problem that worsens with the degree of augmentation. We will consider some recently developed MCMC schemes that are not adversely affected by the amount of augmentation. In particular, by sampling parameters conditional on a skeleton of the driving Brownian motion rather than the sample path, the mixing problem can be overcome. The methodology will be illustrated by estimating parameters governing the diffusion approximations of some interesting systems biological models. |
关 键 词: | 观察扩散; 最新进展 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-07:王勇彬(课程编辑志愿者) |
阅读次数: | 101 |