图Helmholtzian和等级学习Graph Helmholtzian and rank learning |
|
课程网址: | http://videolectures.net/aml08_lim_ghrl/ |
主讲教师: | Lek-Heng Lim |
开课单位: | 加州大学伯克利分校 |
开课时间: | 2008-12-20 |
课程语种: | 英语 |
中文简介: | 图Helmholtzian是图理论中亥姆霍兹算子或向量拉普拉斯算子的类比,就像图Laplacian是拉普拉斯算子或标量拉普拉斯算子的类比一样。我们将看到,与图Helmholtzian相关联的分解提供了一种从不完整、不平衡和基于基数分数的数据中学习排序信息的方法。该框架将表示两两排序的边缘流正交分解为表示l2最优全局排序的梯度流(无环流)和量化不一致性的无分歧流(无环流)。如果后者很大,那么数据就不承认具有统计意义的全球排名。进一步将不一致的组件分解为旋度流(局部循环)和谐波流(局部非循环),提供了关于备选方案的小范围和大范围比较的有效性的信息。这是与蒋晓烨、袁瑶、叶银玉共同合作的作品。 |
课程简介: | The graph Helmholtzian is the graph theoretic analogue of the Helmholtz operator or vector Laplacian, in much the same way the graph Laplacian is the analogue of the Laplace operator or scalar Laplacian. We will see that a decomposition associated with the graph Helmholtzian provides a way to learn ranking information from incomplete, imbalanced, and cardinal score-based data. In this framework, an edge flow representing pairwise ranking is orthogonally resolved into a gradient flow (acyclic) that represents the L2-optimal global ranking and a divergence-free flow (cyclic) that quantifies the inconsistencies. If the latter is large, then the data does not admit a statistically meaningful global ranking. A further decomposition of the inconsistent component into a curl flow (locally cyclic) and a harmonic flow (locally acyclic) provides information on the validity of small- and large-scale comparisons of alternatives. This is joint work with Xiaoye Jiang, Yuan Yao, and Yinyu Ye. |
关 键 词: | Helmholtzian图; 向量拉普拉斯算子; 和谐波流 |
课程来源: | 视频讲座网 |
最后编审: | 2021-01-28:nkq |
阅读次数: | 57 |