从仿射微分几何的角度看计算几何Computational Geometry from the Viewpoint of Affine Differential Geometry |
|
课程网址: | http://videolectures.net/etvc08_matsuzoe_cgftv/ |
主讲教师: | Matsuzoe Hiroshi |
开课单位: | 名古屋工业大学 |
开课时间: | 2008-12-05 |
课程语种: | 英语 |
中文简介: | 发生率关系(顶点,边缘等的配置)在计算几何中很重要。在仿射变换组下,发生率关系是不变的。另一方面,仿射微分几何是研究仿射空间中的超曲面,其在仿射变换的组下是不变的。因此,仿射微分几何在计算几何中给出了新的视角。从仿射微分几何的角度出发,讨论了几何变换和双变换算法。欧几里德距离函数由仿射微分几何中的发散函数推广。发散函数是歧管上的非对称距离函数,它是信息几何中的重要对象。对于发散函数,给出了统计流形上的上包络定理。还讨论了从发散函数确定的Voronoi图。 |
课程简介: | Incidence relations (configurations of vertexes, edges, etc.) are important in computational geometry. Incidence relations are invariant under the group of affine transformations. On the other hand, affine differential geometry is to study hypersurfaces in an affine space that are invariant under the group of affine transformation. Therefore affine differential geometry gives a new sight in computational geometry. From the viewpoint of affine differential geometry, algorithms of geometric transformation and dual transformation are discussed. The Euclidean distance function is generalized by a divergence function in affine differential geometry. A divergence function is an asymmetric distance-like function on a manifold, and it is an important object in information geometry. For divergence functions, the upper envelope type theorems on statistical manifolds are given. Voronoi diagrams determined from divergence functions are also discussed. |
关 键 词: | 发生率关系; 仿射变换组; 仿射微分几何 |
课程来源: | 视频讲座网 |
最后编审: | 2019-04-14:lxf |
阅读次数: | 94 |