0


高阶熵编码 - 从传统视频编码到分布式编码

High Order Entropy Coding - From Conventional Video Coding to Distributed
课程网址: http://videolectures.net/icme2012_zeng_entropy_coding/  
主讲教师: Wenjun (Kevin) Zeng
开课单位: 密苏里大学
开课时间: 2012-09-18
课程语种: 英语
中文简介:
高阶熵编码已经被广泛研究用于传统/集中式图像/视频编码,并且被认为对于提高编码效率比对输入信号进行变换和量化更重要[1-4]。 Yetit尚未在任何显着程度上探索分布式视频编码(DVC),这是一种范式转换方法,其特点是“简单编码器和复杂解码器”,非常适合无线传感器网络和分布式并行处理等新兴应用。过去十年的DVC研究尽管DVC范例具有许多优点,但已经表现出与传统视频编码技术的显着性能差距。这主要是因为DVC在估计侧面信息方面遇到极大困难(相当于传统视频编码中的运动补偿预测)。这一主要障碍导致了混乱和误解,这使得研究人员不愿意研究在DVC中利用高阶空间相关性的问题 - 这一任务本身在DVC范例中被证明是非常具有挑战性的。我的小组最近的工作[5]提供了一些关于DVC在信息估计方面的性能的理论分析,并且已经证明其实践中它具有与传统运动补偿预测相当的性能。这表明现在正是时候研究如何有效地探索DVC中的高阶空间相关性。在本次演讲中,我将回顾在传统视频编码中提出的用于高orderentropy编码的技术的演化,重点是基于高阶上下文的方法,并讨论如何利用先前的想法和经验来加速高效率的进步。 DVC环境下的熵编码。参考文献:\\ 1。 J. M. Shapiro,“使用零树小波系数的嵌入式图像编码”,IEEE Trans。信号处理,第一卷41,不。 12,第3445 - 3462,1993年12月\\ 2。 A. Said和W. A. Pearlman,“基于分层树中的集合划分的新的,快速的,高效的图像编码”,IEEE Trans.Circ。 &Sys。 Video Tech。,vol。 6,不。 3,pp.243-249,1996年6月。\\ 3。 X. Wu,“用于图像压缩的小波系数的高阶上下文建模和嵌入式条件熵编码”,第31届Asilomar信号,系统与计算机会议,1997年。\\ 4。 D. Taubman和M. W. Marcelin,JPEG2000:ImageCompression Fundamentals,Standards and Practice,Springer,2002。\\ 5。 W. Liu,L。Dong和W. Zeng,“运动精化基于Wyner-Ziv视频编码的渐进侧信息估计”,IEEE Trans。在Cir。和系统。视频技术,第一卷。 20,没有。 2010年12月12日。
课程简介: High order entropy coding has been extensively studied for conventional/centralized image/video coding and is believed to be much more important for improving the coding efficiency than adapting transform and quantization to the input signal [1‐4]. Yet it has not been explored to any significant extent for distributed video coding (DVC), a paradigm shifting approach that features “simple encoder and complex decoder” that is well suited to emerging applications such as wireless sensor network and distributed parallel processing. DVC research in the past decade has shown significant performance gap from conventional video coding techniques despite many advantages of the DVC paradigm. This is mainly because DVC suffers from the extreme difficulty in estimating the side information (equivalent to the motion compensated prediction in conventional video coding). This major obstacle has led to confusion and misconception, which has discouraged researchers to look into the issue of exploiting high order spatial correlations in DVC ‐ a task itself proving to be very challenging too in the DVC paradigm. Recent work in my group [5] provided some theoretical analysis of the performance of DVC in terms of side information estimation and has demonstrated that in practice it has comparable performance as traditional motion compensated prediction. This suggests that it is the right time now to move on to investigate how to efficiently explore the high order spatial correlations in DVC. In this talk, I will review the evolution of techniques that have been proposed for high order entropy coding in conventional video coding, with a focus on high order context based approaches, and discuss how previous ideas and experiences can be leveraged to speed‐up the progress in designing highly efficient entropy coding in the context of DVC. References:\\ 1. J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients”, IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3445‐3462, Dec. 1993\\ 2. A. Said and W. A. Pearlman, “New, fast, and efficient image codec based on set partitioning in hierarchical trees”, IEEE Trans. Circ. & Sys. Video Tech., vol. 6, no. 3, pp. 243‐249, June 1996.\\ 3. X. Wu, “High‐Order Context Modeling and Embedded Conditional Entropy Coding of Wavelet Coefficients for Image Compression,” the 31st Asilomar Conference on Signals, Systems & Computers, 1997.\\ 4. D. Taubman and M. W. Marcelin, JPEG2000: Image Compression Fundamentals, Standards and Practice, Springer, 2002.\\ 5. W. Liu, L. Dong and W. Zeng, “Motion Refinement Based Progressive Side‐Information Estimation for Wyner‐Ziv Video Coding,” IEEE Trans. on Cir. and Sys. for Video Technology, vol. 20, no. 12, Dec. 2010.
关 键 词: 高阶熵编码; 分布式视频编码; 无线传感器网络
课程来源: 视频讲座网
最后编审: 2019-04-17:lxf
阅读次数: 127