首页数学
   首页力学
   首页物理学

维度的度量概念及其在学习中的应用

A metric notion of dimension and its applications to learning
课程网址: http://videolectures.net/icml2010_krauthgamer_amnda/  
主讲教师: Robert Krauthgamer
开课单位: 魏茨曼科学研究所
开课时间: 2010-07-20
课程语种: 英语
中文简介:
让我们将度量空间的维度定义为最小k> 0,使得度量空间中的每个球可以被半径为半球的2 ^ k球覆盖。除了适用于每个度量空间之外,该定义还具有几个吸引人的特征例如,它与欧几里德空间中的标准维度概念一致,但也捕获了诸如流形的非线性结构。低维度的度量空间(在上述定义下)在许多情况下自然发生。我将讨论有关此类度量空间的最新理论结果,包括诸如嵌入性,降维,最近邻搜索和大边距分类等问题,常见的线索是低维意味着算法效率。
课程简介: Let us define the dimension of a metric space as the minimum k>0 such that every ball in the metric space can be covered by 2^k balls of half the radius. This definition has several attractive features besides being applicable to every metric space. For instance, it coincides with the standard notion of dimension in Euclidean spaces, but captures also nonlinear structures such as manifolds. Metric spaces of low dimension (under the above definition) occur naturally in many contexts. I will discuss recent theoretical results regarding such metric spaces, including questions such as embeddability, dimension reduction, Nearest Neighbor Search, and large-margin classification, the common thread being that low dimension implies algorithmic efficiency.
关 键 词: 度量空间; 欧几里德空间; 标准维度
课程来源: 视频讲座网
最后编审: 2019-04-25:cwx
阅读次数: 136