0


社会标签系统的主题透视模型

The Topic-Perspective Model for Social Tagging Systems
课程网址: http://videolectures.net/kdd2010_lu_tpmsts/  
主讲教师: Caimei Lu
开课单位: 德雷克塞尔大学
开课时间: 2010-10-01
课程语种: 英语
中文简介:
在本文中,我们提出了一种新的概率生成模型,称为主题透视模型,用于模拟社会注释的生成过程。与其他生成模型不同,在我们的模型中,标签生成过程与内容项生成过程分开。虽然内容术语仅从资源主题生成,但社交标签由资源主题和用户视角一起生成。所提出的概率模型可以产生比之前提出的任何其他模型更有用的信息。从该模型中学习的参数包括:(1)每个文档的主题分布,(2)每个用户的透视分布,(3)每个主题的单词分布,(4)每个主题的标签分布,(5) )每个用户视角的标签分布,(6)以及从资源主题或用户视角生成的每个标签的概率。实验结果表明,与以往研究中提出的其他两种模型相比,该模型具有更好的泛化性能或标签预测能力。
课程简介: In this paper, we propose a new probabilistic generative model, called Topic-Perspective Model, for simulating the generation process of social annotations. Different from other generative models, in our model, the tag generation process is separated from the content term generation process. While content terms are only generated from resource topics, social tags are generated by resource topics and user perspectives together. The proposed probabilistic model can produce more useful information than any other models proposed before. The parameters learned from this model include: (1) the topical distribution of each document, (2) the perspective distribution of each user, (3) the word distribution of each topic, (4) the tag distribution of each topic, (5) the tag distribution of each user perspective, (6) and the probabilistic of each tag being generated from resource topics or user perspectives. Experimental results show that the proposed model has better generalization performance or tag prediction ability than other two models proposed in previous research.
关 键 词: 概率生成模型; 社交标签; 主题透视模型
课程来源: 视频讲座网
最后编审: 2019-05-11:lxf
阅读次数: 57