0


通过长期和短期偏好融合对图形的时间建议

Temporal Recommendation on Graphs via Long- and Short-term Preference Fusion
课程网址: http://videolectures.net/kdd2010_yuan_trgl/  
主讲教师: Quan Yuan
开课单位: IBM公司
开课时间: 2010-10-01
课程语种: 英语
中文简介:
随着时间的推移准确捕获用户偏好是推荐系统中的一个重大实际挑战。随着时间的简单关联通常没有意义,因为用户由于不同的外部事件而改变他们的偏好。用户行为通常可以由个人的长期和短期偏好决定。如何表示用户的长期和短期偏好?如何利用它们进行时间推荐?为了应对这些挑战,我们提出了基于会话的时间图(STG),它可以同时模拟用户的长期和短期偏好。基于STG模型框架,我们提出了一种新的推荐算法注入偏好融合(IPF),并扩展了个性化随机游走的时间推荐。最后,我们使用两个关于引文和社会书签的真实数据集来评估我们方法的有效性,其中我们提出的方法IPF比先前的技术水平提高了15%34%。
课程简介: Accurately capturing user preferences over time is a great practical challenge in recommender systems. Simple correlation over time is typically not meaningful, since users change their preferences due to different external events. User behavior can often be determined by individual's long-term and short-term preferences. How to represent users' long-term and short-term preferences? How to leverage them for temporal recommendation? To address these challenges, we propose Session-based Temporal Graph (STG) which simultaneously models users' long-term and short-term preferences over time. Based on the STG model framework, we propose a novel recommendation algorithm Injected Preference Fusion (IPF) and extend the personalized Random Walk for temporal recommendation. Finally, we evaluate the effectiveness of our method using two real datasets on citations and social bookmarking, in which our proposed method IPF gives 15%-34% improvement over the previous state-of-the-art.
关 键 词: 用户偏好; 简单关联; 社会书签
课程来源: 视频讲座网
最后编审: 2020-10-22:chenxin
阅读次数: 130