0


贝叶斯模型选择:erk-map激酶磷酸化动力学的机制模型

Bayesian model selection: mechanistic models of Erk MAP kinase phosphorylation dynamics
课程网址: http://videolectures.net/licsb09_toni_bms/  
主讲教师: Tina Toni
开课单位: 帝国理工学院
开课时间: 2009-04-16
课程语种: 英语
中文简介:
ABC SMC是贝叶斯参数推理算法,它基于机械模型的有效模拟。我们通过在扩展参数空间(M,\ theta)上定义它来使其适用于模型选择。模型选择ABC SMC算法在给定可用模型集合的情况下为系统选择最佳模型,平衡与数据的拟合和模型的复杂性。 ,这里我们将其应用于Erk MAP激酶的磷酸化动力学。已经证明MAPK的体外磷酸化和去磷酸化通过分布机制发生(Burack 1997,Ferrell 1997,Zhao 2001)。最近,基于自动化高通量免疫染色和图像处理的新型实验技术允许基于体内个体细胞群体收集数据(Ozaki等人,在制备中)。我们将研究四种不同的假设:1)分布性磷酸化和去磷酸化,2)过程磷酸化和去磷酸化,3)分布式磷酸化,进行性去磷酸化,4)过程磷酸化,分布性去磷酸化,动力学ODE模型建模并采用贝叶斯模型选择工具基于ABC SMC算法(Toni等,2009),确定体内Erk信号通路中发生磷酸化和去磷酸化的最可能机制。
课程简介: ABC SMC is a Bayesian parameter inference algorithm which is based on efficient simulation of mechanistic models. We have adapted it for model selection by defining it on an extended parameter space (M, \theta). Model selection ABC SMC algorithm chooses the best model for the system given the set of available models, balancing the fit to the data and the complexity of the model. , Here we apply it to the phosporylation dynamics of Erk MAP kinase. It has been demonstrated that in vitro phosphorylation and dephosphorylation of MAPK occur though a distributive mechanism (Burack 1997, Ferrell 1997, Zhao 2001). Recently, novel experimental techniques based on automated high-throughput immunostaining and image processing have allowed for collection of data based on population of individual cells in vivo (Ozaki et al., in preparation). We are going to examine four different hypotheses , 1) distributive phosphorylation and dephosphorylation , 2) processive phosphorylation and dephosphorylation , 3) distributive phosphorylation, processive dephosphorylation , 4) processive phosphorylation, distributive dephosphorylation , modeled by kinetic ODE models and employ Bayesian model selection tool based on ABC SMC algorithm (Toni et al., 2009) to determine the most likely mechanisms of phosphorylation and dephosphorylation occuring in Erk signaling pathway in vivo.
关 键 词: 贝叶斯参数; 机械模型; 磷酸化动力学
课程来源: 视频讲座网
最后编审: 2020-01-16:chenxin
阅读次数: 100