0


预测模型的主动比较

Active Comparison of Prediction Models
课程网址: http://videolectures.net/machine_sawade_prediction_models/  
主讲教师: Christoph Sawade
开课单位: 波茨坦大学
开课时间: 2013-01-14
课程语种: 英语
中文简介:
我们解决了在固定标签预算中尽可能自信地比较两个给定预测模型的风险的问题,例如基线模型和挑战者。每当模型无法与保持的训练数据进行比较时,就会出现此问题,可能是因为训练数据不可用或未反映所需的测试分布。在这种情况下,必须绘制新的测试实例并以成本标记。我们设计了一种主动比较方法,根据仪器采样分布选择实例。我们得出的样本分布最大化了应用于观察到的经验风险的统计检验的功效,从而最小化了选择劣质模型的可能性。根据经验,我们研究了几个分类和回归任务的模型选择问题,并研究了得到的p值的准确性。
课程简介: We address the problem of comparing the risks of two given predictive models - for instance, a baseline model and a challenger - as confidently as possible on a fixed labeling budget. This problem occurs whenever models cannot be compared on held-out training data, possibly because the training data are unavailable or do not reflect the desired test distribution. In this case, new test instances have to be drawn and labeled at a cost. We devise an active comparison method that selects instances according to an instrumental sampling distribution. We derive the sampling distribution that maximizes the power of a statistical test applied to the observed empirical risks, and thereby minimizes the likelihood of choosing the inferior model. Empirically, we investigate model selection problems on several classification and regression tasks and study the accuracy of the resulting p-values.
关 键 词: 固定标签; 预测模型; 回归任务
课程来源: 视频讲座网
最后编审: 2019-05-15:lxf
阅读次数: 69