第二定律与能量The Second Law and Energy |
|
课程网址: | http://videolectures.net/mitworld_chu_tcla/ |
主讲教师: | Steven Chu |
开课单位: | 美国能源部 |
开课时间: | 2011-04-05 |
课程语种: | 英语 |
中文简介: | 这位获得诺贝尔奖的科学家承认,在他谈论热力学之前,他熬夜了。他充分利用了他的研究,讨论了热力学定律的历史和应用,这些定律已成为“我们如何利用能源的科学基础,以及工业革命的基础,国家的财富。”以瓦特的1765年为例蒸汽机,Stephen Chu说明了热力学的基本原理,即能量保存,你可以通过加热来工作,特别是当你最大限度地提高系统温度差异并最大限度地减少摩擦产生的热量耗散时。朱提出另一种形式的法律:你不能赢;你不能收支平衡;并且你不能离开游戏。在过去的几个世纪里,游戏并没有发生太大变化。各国现在燃煤供电,热效率达到40%左右。天然气可以以更高的效率进行利用,如果我们可以为锅炉配置耐高温金属,那么更少的能源就会浪费掉。楚指出,这是一个紧迫的问题,因为这个星球已经无法再肆意使用碳基燃料了。由于二氧化碳含量过高,我们的全球“热力发动机”已开始向不可逆转的方向发展。因此,Chu的一个重要问题是,科学能否设计出能够产生可持续(无碳)能源的熵引擎。他描述了利用改进的太阳能电池捕获太阳光的努力,但注意到硅短缺,昂贵的芯片和学习曲线根据摩尔定律的说法,这项技术将在10年内不会被广泛部署,在气候变化的斗争中不够快。 Chu喜欢风力发电的效率,但涡轮机的尺寸有限,美国的高压输电网络需要一个完整而昂贵的改造才能充分利用风能。他建议忘记玉米作为生物燃料,因为它“在节省的二氧化碳方面几乎没有破裂”,而是专注于像芒草这样的多年生草。朱的实验室和其他人正在寻找可以帮助这些植物更容易转化为燃料的微生物。楚说,另一种潜在的丰富能源包括将太阳光转化为燃料,就像植物在光合作用中所做的那样。但是,“自然如何分裂水?”楚问道。科学还没有完全弄清楚将水转化为氧气和氢气的分子机器。 Chu表示,通过人工光合作用获得生物能源可能意味着在不同的角度考虑熵和其他基本定律。 “大自然变得非常好。” |
课程简介: | This Nobel Prize-winning scientist admits to staying up late the night before his talk to bone up on thermodynamics. He puts his research to good use, discussing the history and application of the laws of thermodynamics, which have served as “the scientific foundation of how we harness energy, and the basis of the industrial revolution, the wealth of nations.” Taking Watt’s 1765 steam engine, Stephen Chu illustrates basic principles of thermodynamics -- that energy is conserved, that you can do work from heat, especially when you maximize the difference in temperature in the system and minimize heat dissipation from friction. Chu offers another form of the laws: You can’t win; you can’t break even; and you can’t leave the game. The game hasn’t changed all that much in the past few centuries. Nations now burn coal for electricity, achieving around 40% thermal efficiency. Natural gas can be harnessed at higher efficiencies still, and if we could deploy temperature-resistant metals for boilers, even less energy would go to waste. This is a pressing matter, points out Chu, because the planet can no longer afford wanton use of carbon-based fuels. With too much CO2, our global “heat engine” has begun to tip toward a point of no return. So the big question for Chu is whether science can design “entropy engines that can generate sustainable (carbon-free) energy sources. He describes efforts to capture sunlight with improved solar cells, but notes that a silicon shortage, expensive chips, and a learning curve dictated by Moore’s law mean the technology won’t be widely deployed for 10-15 years -- not fast enough in the battle against climate change. Chu likes the efficiencies of power generation from wind, but there’s a limit to turbine size, and the U.S. high voltage transmission network needs a complete and expensive makeover to take full advantage of wind. Forget corn as biofuel, he counsels, since it “barely breaks even in terms of CO2 saved,” and focus instead on perennial grasses like miscanthus. Chu’s lab and others are looking for microbes that can help turn these plants more readily into fuels. Another potentially rich energy source, Chu says, involves converting sun light into fuel the way plants do in photosynthesis. But “how does nature split water?” asks Chu. Science hasn’t entirely figured out the molecular machinery that turns water into oxygen and hydrogen. Deriving bioenergy through artificial photosynthesis may mean considering entropy and other basic laws in a different light, Chu suggests. “Nature turns out to be very good.” |
关 键 词: | 热力学; 工业革命; 能量保存 |
课程来源: | 视频讲座网 |
最后编审: | 2019-05-21:cwx |
阅读次数: | 45 |