0


独立成分分析

Independent Component Analysis
课程网址: http://videolectures.net/mlss05au_hyvarinen_ica/  
主讲教师: Aapo Hyvärinen
开课单位: 赫尔辛基大学
开课时间: 2007-02-25
课程语种: 英语
中文简介:
在独立分量分析(ICA)中,目的是将多维数据向量线性分解为尽可能统计独立的分量。对于非高斯随机向量,这种分解不等同于主成分分析所做的去相关,而是相当复杂的东西。 ICA允许人们“盲目地”将非高斯源信号与它们的线性混合物分开,即不使用除源信号的同焦度之外的其他信息。 ICA还可用于根据源于神经科学的冗余减少原理从图像和声音信号中提取特征。在我的演讲中,我将回顾ICA的基本理论和理论背景以及最近的一些理论发展。
课程简介: In independent component analysis (ICA), the purpose is to linearly decompose a multidimensional data vector into components that are as statistically independent as possible. For nongaussian random vectors, this decomposition is not equivalent to decorrelation as is done by principal component analysis, but something considerably more sophisticated. ICA allows one to separate nongaussian source signals from their linear mixtures 'blindly', i.e. using no other information than the congaussianity of the source signals. ICA can also be used to extract features from image and sound signals according to the principle of redundancy reduction that has its origins in the neurosciences. In my talks I will review the basic theory and theoretical background of ICA together with some recent theoretical developments.
关 键 词: 独立分量分析; 多维数据; 非高斯随机向量
课程来源: 视频讲座网
最后编审: 2020-06-07:王勇彬(课程编辑志愿者)
阅读次数: 204