优化近似推理Expectation Consistent Approximate Inference |
|
课程网址: | http://videolectures.net/oiml05_winther_ecai/ |
主讲教师: | Ole Winther |
开课单位: | 丹麦科技大学 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 我们提出了一种新的框架,用于近似于难处理的概率模型。该方法基于推理的自由能量公式,并允许同时计算边际期望和连续和离散随机变量的对数分区函数。使用易处理模型周围的自由能的精确微扰表示,近似使用两个易处理的概率分布,其在一组矩上是一致的并且编码原始难处理分布的不同特征。通过这种方式,我们能够包括在(分解的)变分贝叶斯方法中被忽略的非平凡相关性。我们在完全连接的图和2D网格上测试二进制变量的玩具基准问题框架,并与其他方法进行比较,例如循环信念传播。通过使用单个节点作为易处理的子结构已经实现了良好的性能。当使用生成树时,可以获得显着的改进。 |
课程简介: | We propose a novel framework for approximations to intractable probabilistic models. The method is based on a free energy formulation of inference and allows for a simultaneous computation of marginal expectations and the log partition function for continuous and discrete random variables. Using an exact perturbative representation of the free energy around a tractable model, the approximation uses two tractable probability distributions which are consistent on a set of moments and encode different features of the original intractable distribution. In such a way we are able to include nontrivial correlations which are neglected in a (factorized) variational Bayes approach. We test the framework on toy benchmark problems for binary variables on fully connected graphs and 2D grids and compare with other methods, such as loopy belief propagation. Good performance is already achieved by using single nodes as tractable substructures. Significant improvements are obtained when a spanning tree is used instead. |
关 键 词: | 近似推理; 自由能量公式; 边际期望; 贝叶斯方法; 循环信念传播 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-08:cxin |
阅读次数: | 80 |