0


磁性纳米粒子的结构性质

Structural properties of magnetic nanoparticle
课程网址: http://videolectures.net/slonano07_makovec_spm/  
主讲教师: Darko Makovec
开课单位: 约瑟夫·斯特凡学院
开课时间: 2008-01-18
课程语种: 英语
中文简介:
已经深入研究了纳米粒子的基本磁性,并且通常很好地理解小(纳米)尺寸对磁性的影响。然而,混合氧化物纳米颗粒的磁性不仅直接地,而且间接地通过小尺寸对纳米颗粒结构的影响而取决于颗粒的尺寸。已知与“块状”结构相比,纳米颗粒的结构更灵活。通常,它适应小尺寸和大的表面与体积比,导致原子在不同晶格位置上的分布,这与散装材料的显着不同。另外,缺陷通常存在于纳米颗粒的结构中。在两种结构类型的磁性纳米粒子的情况下,将讨论纳米粒子结构与理想“体积”状态的偏差的不同方面:尖晶石铁氧体(ZnFe2O4,Mn0.5Zn0.5Fe2O4,CoFe2O4)和六方铁氧体(六角铁氧体,钡铁氧体)。在尖晶石中,纳米颗粒晶体结构与大块状态的偏差主要表现为构成阳离子在结构中存在的两个不同晶格位点上的不同分布(四面体配位的A位和八面体配位的B位)。在六铁氧体的情况下,不可能在不同的晶格位置上交换两种阳离子Ba和Fe。六铁氧体的晶体结构可以描述为两个基本嵌段的堆叠序列,含有Fe阳离子的尖晶石嵌段S和含有Fe和Ba阳离子的嵌段R.在此,期望通过两个结构块的堆叠的变化使晶体结构适应小纳米粒子尺寸。纳米颗粒晶体结构的灵活性导致纳米颗粒的化学组成的灵活性,允许大体积化学计量的组成偏差而不损失单相结构。取决于用于其合成的方法,纳米颗粒的结晶度也不同。可控制尺寸的小尖晶石铁氧体纳米颗粒可以在低温下相对简单地制备。在这项工作中,使用了两种方法:反相微乳液中的共沉淀和相应油酸酯的热分解。与尖晶石铁氧体相反,需要相对高的温度来形成六铁氧体,使得它们以小纳米颗粒的形式受控合成相对困难。在这项工作中使用了特殊的水热方法进行合成。使用X射线衍射(XRD),高分辨率电子显微镜(HREM)结合能量色散X射线光谱(EDX)和X射线吸收光谱(EXAFS,XANES)在同步加速器的E4光束线上测量,研究了纳米粒子的结构。根据欧盟合同RII3 CT 2004 506008(IA SFS),汉堡DESY的辐射实验室HASYLAB(项目II 04 065 EC)。
课程简介: The basic magnetic properties of nanoparticles have been intensively studied and the influence of the small (nano) size on the magnetic properties is generally well understood. However, the magnetic properties of mixed-oxide nanoparticles depend on the size of particles not only directly, but also indirectly, through the influence of the small size on the structure of nanoparticles. It is known that the structure of nanoparticles is more flexible compared to the “bulk” structure. Usually, it adapts to the small size and the large surface-to-volume ratio resulting in distribution of atoms over different lattice sites that is significantly different to that of the bulk material. Additionally, defects are usually present in the structure of the nanoparticles. Different aspects of the deviations in the structure of nanoparticles from the ideal “bulk” state will be discussed in the cases of two structural types of magnetic nanoparticles: spinel ferrites (ZnFe2O4, Mn0.5Zn0.5Fe2O4, CoFe2O4) and hexagonal ferrite (hexaferrite, BaFe12O19). In the spinels, the deviation of the nanoparticles crystal structure from the bulk situation expresses itself mainly with different distribution of the constituting cations over two different lattice sites existing in the structure (tetrahedrally coordinated A sites and octahedrally coordinated B sites). In the case of hexaferrites, the exchange of two cations, Ba and Fe over different lattice positions is not likely. A hexaferrites' crystal structure can be described as a stacking sequence of two basic blocks, a spinel block S, containing Fe cations, and the block R, containing Fe and Ba cations. Here, the adaptation of the crystal structure to the small nanoparticle size by the change in the stacking of the two structural blocks is expected. The flexibility in the nanoparticles crystal structure results in a flexibility of the nanoparticles’ chemical composition, allowing large compositional deviations from the bulk stoichiometry without losing the single-phase structure. Depending on the method used for their synthesis, the nanoparticles also differ in the state of their crystallinity. The small spinel ferrite nanoparticles of controlled sizes could be relatively simply prepared already at low temperatures. In this work, two methods were used: a co-precipitation in reversed microemulsions and a thermal decomposition of the corresponding oleates. In contrary to spinel ferrites, relatively high temperatures are needed for the formation of hexaferrites making their controlled synthesis in the form of the small nanoparticles relatively difficult. Special hydrothermal methods were used for their synthesis in this work. The structure of the nanoparticles has been studied using X-ray diffractometry (XRD), high-resolution electron microscopy (HREM) coupled with energy-dispersive X-ray spectroscopy (EDX), and X-ray absorption spectroscopy (EXAFS, XANES) measured at E4 beamline of synchrotron radiation laboratory HASYLAB at DESY, Hamburg (project II-04-065 EC) under EU Contract RII3-CT-2004-506008 (IA-SFS).
关 键 词: 纳米粒子; 晶格位置; 散装材料
课程来源: 视频讲座网
最后编审: 2021-04-06:nkq
阅读次数: 63