0


运用博弈论方法进行稳健的内部选择

A Game-Theoretic Approach to Robust Inlier Selection
课程网址: http://videolectures.net/ssspr2010_torsello_gtaris/  
主讲教师: Andrea Torsello
开课单位: 威尼斯卡福斯卡里大学
开课时间: 2010-09-13
课程语种: 英语
中文简介:
内在选择,即从一大堆点中提取一小套正确的基准对应关系,是Computer Vision中各种估计过程的基本步骤,从对象识别到表面/图像配准再到姿势估计,这些过程均如此。典型的方法是在每个点上附加一个描述符,该描述符用于帮助提取良好的对应关系。但是,仅一元描述符不能保证没有异常值,因此必须将其过滤掉。通常,这些滤波方法是基于对异常值执行的初始估计,或者基于类似于RANSAC的过程,因此仅对较小的异常值比率有效。我们提供了一个视角上的变化,利用全局几何一致性的博弈论匹配技术即使与表现出非常低的独特性的简单特征相结合,也能够获得极其强大的对应关系。在表面对准和姿态估计问题上显示了该方法的有效性。
课程简介: Inlier selection, i.e., the extraction of small set of correct fiduciary correspondences from a large set of points is a fundamental step of various estimation processes in Computer Vision, ranging from object recognition, to surface/image registration, to pose estimation. The typical approach is to attach to each point a descriptor which is used in aiding the extraction of good correspondences. However, unary descriptors alone cannot guarantee the lack of outliers, which must then be filtered out. Typically these filtering approaches are either based on the initial estimation performed with the outliers, or on a RANSAC-like process, thus being effective only for small outlier ratios. We offer a change in perspective, where a game-theoretic matching technique that exploits global geometric consistency allows to obtain an extremely robust correspondences even when coupled with simple features exhibiting very low distinctiveness. The effectiveness of the approach is shown on surface registration and pose estimation problems.
关 键 词: 内在选择; 基准对应; 滤波方法
课程来源: 视频讲座网
最后编审: 2019-09-26:cwx
阅读次数: 60