0


LSD-SLAM:大型直接单目SLAM

LSD-SLAM: Large-Scale Direct Monocular SLAM
课程网址: http://videolectures.net/eccv2014_engel_monocular_slam/  
主讲教师: Jakob Engel
开课单位: 慕尼黑信息学院
开课时间: 2014-10-29
课程语种: 英语
中文简介:
我们提出了一种直接(无特征)单目SLAM算法,与当前直接方法的最新技术相比,该算法允许构建大规模、一致的环境地图。在基于直接图像对齐的高精度位姿估计的基础上,将三维环境实时重建为关键帧的位姿图,并与相应的半密集深度图相关联。这些是通过过滤大量像素级的小基线立体比较得到的。显式的尺度漂移感知公式允许该方法在具有挑战性的序列上操作,包括场景比例的大变化。主要的使能技术有两个关键的创新点:(1)一种新的直接跟踪方法,在TeX上运行,从而明确检测尺度漂移;(2)一种优雅的概率解决方案,将噪声深度值的影响纳入跟踪。由此产生的直接单目SLAM系统在CPU上实时运行。
课程简介: We propose a direct (feature-less) monocular SLAM algorithm which, in contrast to current state-of-the-art regarding direct methods, allows to build large-scale, consistent maps of the environment. Along with highly accurate pose estimation based on direct image alignment, the 3D environment is reconstructed in real-time as pose-graph of keyframes with associated semi-dense depth maps. These are obtained by filtering over a large number of pixelwise small-baseline stereo comparisons. The explicitly scale-drift aware formulation allows the approach to operate on challenging sequences including large variations in scene scale. Major enablers are two key novelties: (1) a novel direct tracking method which operates on TeX, thereby explicitly detecting scale-drift, and (2) an elegant probabilistic solution to include the effect of noisy depth values into tracking. The resulting direct monocular SLAM system runs in real-time on a CPU.
关 键 词: 单目; 算法; 图像
课程来源: 视频讲座网
数据采集: 2020-11-29:yxd
最后编审: 2020-11-29:yxd
阅读次数: 46