0


脑电和脑磁图源重建的逆方法

Inverse Methods for EEG and MEG Source Reconstruction
课程网址: http://videolectures.net/bbci2012_haufe_nolte_source_reconstructi...  
主讲教师: Stefan Haufe; Guido Nolte
开课单位: 弗劳恩霍夫智能分析与信息系统研究所
开课时间: 2012-12-03
课程语种: 英语
中文简介:

在本讲座中,我们回顾了用于EEG和MEG源重构的最流行的逆方法。逆方法可分为三种不同的类别:a)预定模型过多,b)偶极子场重建欠佳,并带有其他约束条件,c)扫描方法产生了神经活动的伪图像。我们将介绍以下方法的入门课程:1.偶极子模型,2.最小范数解和变量(L2,L1,混合范数,S FLEX),2.波束形成器(SAM,LCMV波束形成器,DICS)和4。子空间方法(MUSIC和RAP MUSIC)。本讲座的目的是解释这些方法背后的主要概念,并说明大多数模拟数据中的各自优缺点。

课程简介: In this lecture we review the most popular inverse methods for EEG and MEG source reconstruction. Inverse methods can be divided into three different catagories: a) overdetermined models, b) underdetermined dipole field reconstructions with additional constraints, and c) scanning methods resulting in pseudoimages of neural activity. We will present an introductory course into the following methods: 1. Dipole models, 2. Minimum norm solutions and variants (L2, L1, mixed norms, S-FLEX), 2. Beamformers (SAM, LCMV-beamformer, DICS) , and 4. subspace methods (MUSIC and RAP-MUSIC). The aim of this lecture is to explain the main concepts behind these methods, and to illustrate respective strengths and weaknesses in mostly simulated data.
关 键 词: 模拟数据; 变量模型
课程来源: 视频讲座网
数据采集: 2021-03-20:zyk
最后编审: 2021-05-14:yumf
阅读次数: 92