自然RLDM:大脑和行为的最佳和次最佳控制Natural RLDM: Optimal and Subptimal Control in Brain and Behavior |
|
课程网址: | http://videolectures.net/rldm2015_daw_brain_and_behavior/ |
主讲教师: | Nathaniel Daw |
开课单位: | 纽约大学 |
开课时间: | 2015-07-28 |
课程语种: | 英语 |
中文简介: | 人工智能中强化学习和统计决策理论的方法为理解生物大脑如何解决自然界中的决策问题提供了极具吸引力的框架。特别是,这些工程方法通常从对问题的最佳解决方案进行清晰、规范的分析开始。然而,他们并没有就此止步,而是专注于通过一步一步的算法解决方案(通常是近似的)实现这一点,这自然有助于对行为及其次优性背后的心理和神经机制进行过程层面的解释。在本教程中,我将回顾心理学、行为学、行为经济学和神经科学对生物决策和强化学习的研究。我将重点讨论大脑如何对理想观察者实施不同的近似,这如何有助于解释跨多个领域的决策系统的模块化或多样性的概念,如何在考虑计算的成本和收益时将这些近似理解为有界理性,以及这些机制如何与自我控制和精神障碍有关。 |
课程简介: | Approaches to reinforcement learning and statistical decision theory from artificial intelligence offer appealing frameworks for understanding how biological brains solve decision problems in the natural world. In particular, these engineering approaches typically begin with a clear, normative analysis of the optimal solution to the problem. However, rather than stopping there, they focus on realizing it, often approximately, with a step-by-step algorithmic solution, which lends itself naturally to process-level accounts of the psychological and neural mechanisms underlying behavior and its suboptimalities. In this tutorial I will review research into biological decision making and reinforcement learning from psychology, ethology, behavioral economics, and neuroscience. I will focus on how the brain may implement different approximations to the ideal observer, how this may help to explain notions of modularity or multiplicity of decision systems across several domains, how these approximations might be understood as boundedly rational when taking into account the costs and benefits of computation, and how these mechanisms might be implicated in self control and psychiatric disorders. |
关 键 词: | 神经科学; 行为学; 行为经济学 |
课程来源: | 视频讲座网 |
数据采集: | 2021-11-20:zkj |
最后编审: | 2021-11-20:zkj |
阅读次数: | 53 |