纳米制造技术:未来展望Nanofabrication Technology: A View of the Future |
|
课程网址: | http://videolectures.net/mitworld_willson_ntwf/ |
主讲教师: | Grant Willson |
开课单位: | 德克萨斯大学奥斯丁分校 |
开课时间: | 2014-01-06 |
课程语种: | 英语 |
中文简介: | 格兰特·威尔森(Grant Willson)在一次涉及半导体的解剖和历史的演讲中,就工业界是否能够继续改进这一最有用的发明提出了一些具有挑衅性的想法。 他描述了微型化的稳步发展是如何在过去40年中促成了微芯片的惊人进步的。今天,Willson说,你可以“以低于当地报纸上一个手写字符的成本购买一个晶体管。”当他在20世纪70年代开始在IBM工作时,生产的硅片直径只有1¼英寸;现在“他们比比萨饼还大。” Willson深入研究了使电路上的印刷变得更小和最终产品变得更大的技术变化。他详细介绍了光刻的原始过程,包括设计一个电路图案,然后使用一台2500万美元的打印机和聚焦电子束在一种叫做掩模的特殊玻璃上复制图案。这是掩模的图案,蚀刻在硅片上,构成了微芯片的基础。这些图案一层接一层地放在一块芯片上。 这些工艺背后的机器耗资数千万美元。仅用于通过掩模将激光聚焦到晶圆上的透镜就有40个光学元件,重量相当于一辆汽车。威尔逊解释说,随着时间的推移,“人们试图制造更大的透镜来制造更小的结构。透镜越大,光的波长越短。”威尔逊回忆道,在70年代,机器打印出数百英里的细菌大小的东西。今天,在化学催化剂的帮助下,印刷的直径已经减少到100纳米以下。 但Willson认为,要实现下一代超小型、大规模生产的芯片存在一个问题。主要制造商正在投资数亿美元,以找出正确的方法,使光在芯片上燃烧更多的小人国线。“即使他们成功制造了这种工具,他们也会失败。化学最终会打败他们,机器永远不会工作。”Willson说,化学催化剂扩散,线条模糊,应该是尖锐的。此外,Willson说,这种类型的单台机器将耗资8000万美元,生产成本高得离谱。 那么,半导体技术进步的脚步是否已经结束?Willson还看到了希望,一种新的高分辨率图形制作方法——阶跃和闪光压印光刻(S-FIL),它可以以合理的成本复制小到10纳米的形状。 |
课程简介: | In a lecture that dips into both the anatomy and history of the semiconductor, Grant Willson offers some provocative thoughts on whether industry can continue improving on this most useful of inventions. He describes how steady advances in miniaturization enabled the astonishing progress of microchips over the past 40 years. Today, says Willson, you can “buy a transistor for less than the cost of a single written character in your local newspaper.” When he began at IBM in the 1970s, the silicon wafers produced were only 1 ¼ inches in diameter; now “they’re bigger than pizzas.” Willson delves into the technological changes that both enabled printing on circuits to grow smaller, and the final product to grow larger. He details the original process of photolithography, involving designing a circuit pattern, then using a $25 million printer with a focused electron beam to reproduce the pattern on special glass, called a mask. It’s the mask’s pattern, etched onto a silicon wafer that forms the basis of the microchip. Layer after layer of these patterns get laid down on a single chip. The machines behind these processes cost tens of millions of dollars. Just the lens for focusing laser light onto the wafer through the mask has 40 optical elements and weighs as much as a car. Over time, explains Wilson, “People try to make bigger lenses to make smaller structures. The bigger the lens, the shorter the wavelength of light.” In the ‘70s, recounts Wilson, machines were printing hundreds of miles of stuff the size of a bacterium. Today, with the help of chemical catalysts, printing has been reduced to less than 100 nanometers in diameter. But there’s a problem in reaching the next generation of super-small, mass-produced chips, believes Willson. Major manufacturers are investing hundreds of millions to figure out the right method to enable light to burn ever more Lilliputian lines on chips. “Even if they succeed in building this tool, they will lose. Chemistry will defeat them in the end, and the machine will never work.” According to Willson, the chemical catalyst diffuses and there’s blurring of lines that should be sharp. Furthermore, a single machine of this type would cost $80 million, says Willson, putting production costs ludicrously high. So has the march of improvement in semiconductor technology ended? Willson sees hope yet, in the form of Step and Flash Imprint lithography (S-FIL), a new approach to high resolution patterning, which can replicate shapes as small as 10 nanometers and at reasonable cost. |
关 键 词: | 半导体技术; 纳米; 微型化 |
课程来源: | 视频讲座网 |
数据采集: | 2021-12-02:zkj |
最后编审: | 2021-12-02:zkj |
阅读次数: | 91 |