斑马鱼肌萎缩侧索硬化症(ALS)遗传形式的RNA动态实时成像Live imaging of RNA dynamics for genetic forms of amyotrophic lateral sclerosis (ALS) in zebrafish |
|
课程网址: | http://videolectures.net/encals2017_munoz_ruiz_lateral_sclerosis/ |
主讲教师: | Raphael Munoz-Ruiz |
开课单位: | 脑脊髓研究所 |
开课时间: | 2017-07-21 |
课程语种: | 英语 |
中文简介: | 最近对TDP-43、FUS(两种RNA结合蛋白)突变的鉴定,以及代表一半以上遗传病例的C9orf72和SOD1,以及SQSTM1和VCP,似乎揭示了导致ALS毒性和细胞死亡的蛋白质和RNA稳态改变的全球机制。该实验室专门研究和开发斑马鱼ALS模型。该模型在运动神经元疾病领域的启示在于,它是一种实用、方便、产生大量后代的脊椎动物模型。此外,该模型显示了哺乳动物和人类遗传机制的巨大保守性。此外,斑马鱼还可以利用多种基因工具,方便地培育出瞬时稳定的转基因品系。此外,该模型在胚胎阶段表现出透明性,特别是通过图像,使其与体内致病机制的研究特别相关。本项目旨在研究关键的ALS转录本,如Sqstm1,VCP或C9orf72,以便通过使用实验室已建立的斑马鱼疾病模型,潜在地理解其在病理学中的含义。将开发两种体内技术:-依赖于噬菌体MCP蛋白(MS2外壳蛋白)和特定“发夹”RNA之间相互作用的MS2系统序列称为MBS(MS2结合位点)。将多个MBS序列添加到RNA序列中,并结合融合到荧光蛋白的MCP蛋白的存在,可使您在细胞水平上遵循该特定外源RNA序列(Buxbaum et al,2015)-一种改良的Crispr系统,使用非活性Cas9蛋白,与荧光蛋白(“死亡Cas9-eGFP”)融合。通过修饰,Cas9现在适应于靶向内源性mRNA,从而使其可视化成为可能,而无需对其进行修饰(Nelles等人,2016)。通过活体成像定位转录本将使我们能够对关键ALS RNA物种代谢及其病理机制缺陷进行表征。结合蛋白质原位共定位、RNA水平定量、相互作用伙伴下拉等补充实验,将揭示导致神经元死亡的疾病发病机制的新方面。我们相信,对RNA代谢的详细研究,特别是通过体内实验,有可能持续影响我们对ALS的理解,并在一定程度上影响其他病理学。 |
课程简介: | The recent identification of mutations in TDP-43, FUS, two RNA-binding proteins, altogether with C9orf72 and SOD1 representing more than half of genetic cases, and also SQSTM1 and VCP, seems to unveil a global mechanism of alteration of both protein and RNA homeostasis leading to toxicity and cell death in ALS. The lab has specialized in studying and developping ALS models in zebrafish. The revelance of this model in the field of motor neuron diseases relies on being a practical, convenient and large progeny generating vertebrate model. Furthermore, this model shows a great conservation of genetic mechanisms with mammals and humans. Moreover, the zebrafish allows the use of a wide range of genetic tools convenient to develop transient and stable transgenic lines. Also, this model shows transparency at the embryonic stage, making it particularly relevant to study, especially through imagery, pathogenic mechanisms in vivo. This project aims to study key ALS transcripts such as Sqstm1, VCP or C9orf72 in order to potentially comprehend their implication in the pathology through the use of zebrafish disease models already established in the lab. Two in vivo techniques will be developped: -the MS2 system which relies on the interaction between bacteriophage’s MCP protein (MS2 Coat Protein) and a specific “hairpin” RNA sequence called MBS (MS2-Binding site). The addition of several MBS sequences to an RNA sequence combined with the presence of the MCP protein fused to a fluorescent protein allows you to follow this particular exogenous RNA sequence at the cellular level (Buxbaum et al, 2015). -a modified Crispr system using an inactive Cas9 protein, fused with a fluorescent protein (“dead Cas9-eGFP”). Through modifications, the Cas9 is now adapted to target an endogenous mRNA thus making its visualization possible without modifying it (Nelles et al, 2016). The localization of transcripts through live-imaging will allow us the caracterization of key ALS RNA species metabolism and their defects in pathological mechanisms. All together with complementary experiments such as in situ colocalization with proteins, quantification of RNA levels, pull-down of interacting partners, novel aspects of disease pathogenesis leading to neuronal death would be unveiled. We believe a detailed study of RNA metabolism, especially through in vivo experiments, has the potential to durably impact our understanding of ALS and to a certain extent, other pathologies. |
关 键 词: | 运动神经元疾病; ALS; 斑马鱼 |
课程来源: | 视频讲座网 |
数据采集: | 2021-12-24:zkj |
最后编审: | 2021-12-24:zkj |
阅读次数: | 111 |