解读C9ORF72在ALS中的功能和机制Deciphering the function and mechanisms of C9ORF72 in ALS |
|
课程网址: | http://videolectures.net/encals2017_de_calbiac_function_and_mecha... |
主讲教师: | Hortense de Calbiac |
开课单位: | 脑脊髓研究所 |
开课时间: | 2017-07-21 |
课程语种: | 英语 |
中文简介: | ALS有一个主要的遗传贡献,最常见的遗传异常是C9ORF72基因中的GGCC六核苷酸重复扩增(HRE)。关于C9ORF72突变致病性的拟议机制是功能的丧失和获得,包括通过非ATG启动翻译的二肽重复序列(DPR)的聚集。其中一个假设是C9ORF72在自噬中的作用。有趣的是,自噬还与其他ALS致病基因相关,如VCP、UBQLN2、OPTN和TBK1。SQSTM1是ALS患者中另一个突变的基因,具有众所周知的细胞功能。SQSTM1/p62是启动自噬途径的重要因子。在携带C9ORF72 HRE的患者中检测到p62+包涵体,这导致了这些基因之间功能共同作用的假设。为了研究ALS中C9ORF72和SQSTM1突变诱导的致病机制,我们为这些基因建立了斑马鱼模型。Sqstm1和C9orf72斑马鱼直系同源物的功能丧失导致与较短运动神经元轴突和游泳能力降低相关的特定运动表型。为了阐明运动神经元变性中自噬失调的常见细胞机制,使用C9orf72和Sqstm1斑马鱼模型分析它们的上位性相互作用。我们发现C9orf72和Sqstm1部分抑制具有相加效应,并且C9orf72可以挽救通过Sqstm1敲除获得的表型。这些结果表明,这两种蛋白属于同一途径,C9orf72位于Sqstm1的下游。此外,我们还发现小鼠运动神经元原代培养中C9orf72的缺失导致运动神经元的早期死亡,这与它们不能产生自噬体有关。为了建立DPR致病性的脊椎动物模型,我们表达了含有GFP标记的所有DPR扩增重复序列的质粒:poly(GA)、poly(GP)、poly(GR)、poly(PR)和poly(PA)。我们发现C9orf72功能的丧失是触发斑马鱼体内DPR积累的关键。发生在C9orf72基因敲除下的DPR内含物与运动异常相关——鱼类失去游泳能力,运动神经元轴突缩短。这些结果表明,DPR包涵体和C9orf72基因敲除在共同的致病机制中起作用,表明功能的获得和丧失在C9orf72 HRE致病性中协同作用,从而为ALS的潜在治疗开辟了新途径。 |
课程简介: | ALS has a major genetic contribution, the most common genetic abnormality being the GGGGCC hexanucleotide repeat expansion (HRE) in the C9ORF72 gene. Proposed mechanisms concerning C9ORF72 mutation pathogenicity are loss and gain of function including aggregation of dipeptide repeats (DPRs) translated through a non- ATG-initiated translation. One of the hypotheses would be a role in autophagy for C9ORF72. Interestingly, autophagy is also linked with other ALS causative genes such as VCP, UBQLN2, OPTN and TBK1. SQSTM1 is another gene mutated in ALS patients with a well-known cellular function. SQSTM1/p62, is an essential actor of the initiation of the autophagy pathway. p62+ inclusions have been detected in patients carrying the C9ORF72 HRE leading to the hypothesis of a functional common purpose between these genes. To investigate the pathogenic mechanisms induced by C9ORF72 and SQSTM1 mutations in ALS, we developed zebrafish models for these genes. Loss of function of the Sqstm1 and C9orf72 zebrafish orthologues leads to specific motor phenotypes associated with shorter motor neuron axons and reduced swimming capacity. To elucidate the common cellular mechanisms underlying autophagy dysregulation in motor neuron degeneration, C9orf72 and Sqstm1 zebrafish models were used to analyze their epistatic interactions. We found that C9orf72 and Sqstm1 partial inhibitions have an additive effect and that C9orf72 can rescue the phenotype obtained with Sqstm1 knockdown. These results indicate that both proteins belong to the same pathway and that C9orf72 is downstream of Sqstm1. Also, we found that C9orf72 depletion in mouse motor neurons primary cultures leads to the early death of motor neurons associated with their inability to product autophagosomes. To develop a vertebrate model of DPR pathogenicity, we expressed plasmids containing GFP-tagged expanded repeats for all DPRs: poly(GA), poly(GP), poly(GR), poly(PR), and poly(PA). We found out that the loss of function of C9orf72 is essential to trigger DPR accumulation in zebrafish. Inclusions of DPR happening under C9orf72 knockdown are associated with motor abnormalities - with fish losing their capability to swim, and with shortened motor neuron axons. These results indicate that DPR inclusions and C9orf72 knockdown act in a common pathogenic mechanism, suggesting that both gain and loss of function synergize in the C9ORF72 HRE pathogenicity and thus opening novel avenues for potential treatment of ALS. |
关 键 词: | ALS; C9ORF72突变致病性; ALS的潜在治疗 |
课程来源: | 视频讲座网 |
数据采集: | 2021-12-24:zkj |
最后编审: | 2021-12-24:zkj |
阅读次数: | 61 |