用于兴趣点标记细化的协作学习框架A Collaborative Learning Framework to Tag Refinement for Points of Interest |
|
课程网址: | http://videolectures.net/kdd2019_zhou_gou_hu/ |
主讲教师: | Jingbo Zhou |
开课单位: | 百度研究 |
开课时间: | 2020-03-02 |
课程语种: | 英语 |
中文简介: | 兴趣点标签(POI)可以从位置搜索和位置推荐等多个方面促进基于位置的服务。然而,许多POI标记通常不完整或不精确,这可能导致依赖标记的应用程序性能下降。在本文中,我们研究了POI标签细化问题,该问题旨在自动填充缺失的标签以及纠正POI的噪声标签。我们提出了一个三自适应协作学习框架来搜索最优POI标记分数矩阵。该框架集成了三个组件,以协作方式(i)建模POI和标签之间的相似性匹配,(ii)通过矩阵分解恢复POI标签模式,以及(iii)学习通过最大相似性估计推断最可能的标签。我们设计了一个自适应联合训练过程来优化模型并同时正则化每个分量。最终的细化结果是来自不同组件的多个视图的一致性。我们还讨论了如何利用各种数据源构建标签细化功能,包括用户配置文件数据、百度地图上的查询数据和POI的基本属性。最后,我们进行了大量实验,以证明我们的框架的有效性。我们还进一步介绍了在百度地图上部署我们的框架的案例研究。 |
课程简介: | Tags of a Point of Interest (POI) can facilitate location-based services from many aspects like location search and place recommendation. However, many POI tags are often incomplete or imprecise, which may lead to performance degradation of tag-dependent applications. In this paper, we study the POI tag refinement problem which aims to automatically fill in the missing tags as well as correct noisy tags for POIs. We propose a tri-adaptive collaborative learning framework to search for an optimal POI-tag score matrix. The framework integrates three components to collaboratively (i) model the similarity matching between POI and tag, (ii) recover the POI-tag pattern via matrix factorization and (iii) learn to infer the most possible tags by maximum like lihood estimation. We devise an adaptively joint training process to optimize the model and regularize each component simultaneously. And the final refinement results are the consensus of multiple views from different components. We also discuss how to utilize various data sources to construct features for tag refinement, including user profile data, query data on Baidu Maps and basic properties of POIs. Finally, we conduct extensive experiments to demonstrate the effectiveness of our framework. And we further present a case study of the deployment of our framework on Baidu Maps. |
关 键 词: | 数据科学; 用于兴趣点标记细化; 协作学习框架 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-16:cyh |
最后编审: | 2022-09-19:cyh |
阅读次数: | 30 |