贝叶斯学习Bayesian Learning |
|
课程网址: | http://videolectures.net/mlss05us_ghahramani_bl/ |
主讲教师: | Zoubin Ghahramani |
开课单位: | 视频讲座网 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 贝叶斯规则为机器学习提供了一个简单而强大的框架。本教程的组织如下: 1. 我将从理性相干推理的角度给出贝叶斯框架的动机,并强调边际似然在贝叶斯奥卡姆剃刀中的重要作用。 2. 我将讨论一个人应该如何选择一个明智的院长的问题。当贝叶斯方法失败时,通常是因为没有考虑选择一个合理的先验。 3.贝叶斯推理通常涉及求解高维积分和。我将概述数值逼近技术(例如,拉普拉斯,BIC,变分边界,MCMC, EP…) 4. 我将讨论非参数贝叶斯推断的最新工作,如高斯过程(即贝叶斯核“机器”)、狄利克雷过程混合物等。 |
课程简介: | Bayes Rule provides a simple and powerful framework for machine learning. This tutorial will be organised as follows: 1. I will give motivation for the Bayesian framework from the point of view of rational coherent inference, and highlight the important role of the marginal likelihood in Bayesian Occam's Razor. 2. I will discuss the question of how one should choose a sensible prior. When Bayesian methods fail it is often because no thought has gone into choosing a reasonable prior. 3. Bayesian inference usually involves solving high dimensional integrals and sums. I will give an overview of numerical approximation techniques (e.g. Laplace, BIC, variational bounds, MCMC, EP...). 4. I will talk about more recent work in non-parametric Bayesian inference such as Gaussian processes (i.e. Bayesian kernel "machines"), Dirichlet process mixtures, etc. |
关 键 词: | 边际作用; 高维积分; 高斯过程 |
课程来源: | 视频讲座网 |
数据采集: | 2022-11-24:chenxin01 |
最后编审: | 2022-11-24:chenxin01 |
阅读次数: | 52 |