0


基于先验医学知识的电子医疗记录风险预测

Risk Prediction on Electronic Healthcare Records with Prior Medical Knowledge
课程网址: http://videolectures.net/kdd2018_ma_risk_eletronic/  
主讲教师: Fenglong Ma
开课单位: 水牛城大学
开课时间: 2018-11-23
课程语种: 英语
中文简介:
近年来,通过电子健康记录(EHR)预测潜在疾病的风险引起了广泛关注,特别是随着深度学习技术的发展。与传统的机器学习模型相比,基于深度学习的方法在风险预测任务中取得了更好的性能。然而,现有的工作都没有明确考虑到先前的医学知识(如疾病和相应风险因素之间的关系)。在医学领域,知识通常以离散的、任意的规则表示。因此,如何将这些医疗规则整合到现有的风险预测模型中,提高模型的性能是一个挑战。为了应对这一挑战,我们提出了一种新的、通用的风险预测任务框架PRIME,该框架可以利用后验正则化技术成功地将离散的先验医学知识整合到所有最先进的预测模型中。与传统的后验正则化不同,我们在建模目标疾病在患者身上的期望分布时,不需要为每一条先验医学知识手动设置一个界限。此外,本文提出的PRIME模型可以通过对数线性模型自动学习不同先验知识的重要性。在三个真实医疗数据集上的实验结果证明了所提出的框架在风险预测任务中的有效性
课程简介: Predicting the risk of potential diseases from Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Compared with traditional machine learning models, deep learning based approaches achieve superior performance on risk prediction task. However, none of existing work explicitly takes prior medical knowledge (such as the relationships between diseases and corresponding risk factors) into account. In medical domain, knowledge is usually represented by discrete and arbitrary rules. Thus, how to integrate such medical rules into existing risk prediction models to improve the performance is a challenge. To tackle this challenge, we propose a novel and general framework called PRIME for risk prediction task, which can successfully incorporate discrete prior medical knowledge into all of the state-of-the-art predictive models using posterior regularization technique. Different from traditional posterior regularization, we do not need to manually set a bound for each piece of prior medical knowledge when modeling desired distribution of the target disease on patients. Moreover, the proposed PRIME can automatically learn the importance of different prior knowledge with a log-linear model.Experimental results on three real medical datasets demonstrate the effectiveness of the proposed framework for the task of risk prediction
关 键 词: 电子健康记录; 机器学习模型; 风险预测
课程来源: 视频讲座网
数据采集: 2022-12-06:chenjy
最后编审: 2022-12-06:chenjy
阅读次数: 38