本体论驱动的产品和服务情感分析Ontology-Driven Sentiment Analysis of Product and Service Aspects |
|
课程网址: | http://videolectures.net/eswc2018_schouten_service_aspects/ |
主讲教师: | Kim Schouten |
开课单位: | 鹿特丹伊拉斯谟大学 |
开课时间: | 2018-07-10 |
课程语种: | 英语 |
中文简介: | 由于网络上有如此多固执己见但非结构化的数据,情绪分析在公司和研究人员中都很受欢迎。基于方面的情感分析更进一步,将文本中表达的情感与表达情感的主题或方面联系起来。这使得我们能够对例如对产品或服务的评论所表达的情绪进行详细的分析。在本文中,我们提出了一种知识驱动的方面情感分析方法,以补充传统的机器学习方法。通过利用编码在本体中的通用领域知识,我们改进了给定方面的情感分析。领域知识用于确定哪些单词在给定方面表达情感,以及消除带有情感的单词或短语的歧义。所提出的方法在SemEval-2015和SemEval-2016数据上都具有超过80%的准确性,显著优于考虑的基线。 |
课程简介: | With so much opinionated, but unstructured, data available on the Web, sentiment analysis has become popular with both companies and researchers. Aspect-based sentiment analysis goes one step further by relating the expressed sentiment in a text to the topic, or aspect, the sentiment is expressed on. This enables a detailed analysis of the sentiment expressed in, for example, reviews of products or services. In this paper we propose a knowledge-driven approach to aspect sentiment analysis that complements traditional machine learning methods. By utilizing common domain knowledge, as encoded in an ontology, we improve the sentiment analysis of a given aspect. The domain knowledge is used to determine which words are expressing sentiment on the given aspect as well as to disambiguate sentiment carrying words or phrases. The proposed method has a highly competitive performance of over 80% accuracy on both SemEval-2015 and SemEval-2016 data, significantly outperforming the considered baselines. |
关 键 词: | 非结构化; 知识驱动; 机器学习 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-12:chenjy |
最后编审: | 2022-12-12:chenjy |
阅读次数: | 16 |