0


结构化稀疏学习

Learning with Structured Sparsity
课程网址: http://videolectures.net/icml09_huang_lwss/  
主讲教师: Junzhou Huang
开课单位: 新泽西州立大学
开课时间: 2009-08-26
课程语种: 英语
中文简介:
本文研究了一种新的学习公式,称为结构化稀疏性,它是统计学习和压缩感知中标准稀疏性概念的自然扩展。通过允许特征集上的任意结构,这个概念概括了群稀疏性的思想。基于与结构相关的编码复杂性的概念,开发了一种用于结构化稀疏性学习的通用理论。此外,提出了一种结构化贪婪算法来有效地解决结构化稀疏问题。实验证明了结构化稀疏性优于标准稀疏性。
课程简介: This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set,this concept generalizes the group sparsity idea. A general theory is developed for learning with structured sparsity, based on the notion of coding complexity associated with the structure. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured sparsity problem. Experiments demonstrate the advantage of structured sparsity over standard sparsity.
关 键 词: 学习公式; 稀疏性学习; 压缩感知
课程来源: 视频讲座网
数据采集: 2022-12-19:chenjy
最后编审: 2023-05-11:chenjy
阅读次数: 56