结构化稀疏学习Learning with Structured Sparsity |
|
课程网址: | http://videolectures.net/icml09_huang_lwss/ |
主讲教师: | Junzhou Huang |
开课单位: | 新泽西州立大学 |
开课时间: | 2009-08-26 |
课程语种: | 英语 |
中文简介: | 本文研究了一种新的学习公式,称为结构化稀疏性,它是统计学习和压缩感知中标准稀疏性概念的自然扩展。通过允许特征集上的任意结构,这个概念概括了群稀疏性的思想。基于与结构相关的编码复杂性的概念,开发了一种用于结构化稀疏性学习的通用理论。此外,提出了一种结构化贪婪算法来有效地解决结构化稀疏问题。实验证明了结构化稀疏性优于标准稀疏性。 |
课程简介: | This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set,this concept generalizes the group sparsity idea. A general theory is developed for learning with structured sparsity, based on the notion of coding complexity associated with the structure. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured sparsity problem. Experiments demonstrate the advantage of structured sparsity over standard sparsity. |
关 键 词: | 学习公式; 稀疏性学习; 压缩感知 |
课程来源: | 视频讲座网 |
数据采集: | 2022-12-19:chenjy |
最后编审: | 2023-05-11:chenjy |
阅读次数: | 56 |