使用基于知识图的推理大规模解释和预测异常费用Explaining and predicting abnormal expenses at large scale using knowledge graph based reasoning |
|
课程网址: | http://videolectures.net/iswc2018_lecue_explaining_predicting_exp... |
主讲教师: | Freddy Lecue |
开课单位: | 埃森哲技术实验室 |
开课时间: | 2018-11-22 |
课程语种: | 英语 |
中文简介: | 据全球顶级商务旅行和会议贸易组织全球商务旅行协会(Global business travel Association)的数据,2015年全球商务旅行支出突破了创纪录的1:2万亿美元,到2020年将达到1:6万亿美元。现有的费用系统设计用于在预定义的视图(如时间段、服务或员工组)上报告费用及其类型和金额。然而,这样的系统并不旨在系统地检测异常费用,更重要的是解释其原因。因此,从他们的分析中得出任何可用于优化支出和节约的可行见解都是耗时、麻烦且通常不可能的。针对这一挑战,我们提出了AIFS,这是一个为费用企业所有者和审计员设计的系统。我们的系统正在操纵和结合语义网络和机器学习技术,以(i)识别、(ii)解释和(iii)预测大型组织员工的异常费用索赔。我们的语义感知员工支出分析和推理原型,用191个进行了实验;2015年,346名埃森哲员工在解释和预测异常费用方面表现出了可扩展性和准确性。 |
课程简介: | Global business travel spend topped record-breaking $1:2 Trillion USD in 2015, and will reach $1:6 Trillion by 2020 according to the Global Business Travel Association, the world's premier business travel and meetings trade organization. Existing expenses systems are designed for reporting expenses, their type and amount over pre-defined views such as time period, service or employee group. However such systems do not aim at systematically detecting abnormal expenses, and more importantly explaining their causes. Therefore deriving any actionable insight for optimising spending and saving from their analysis is time-consuming, cumbersome and often impossible. Towards this challenge we present AIFS, a system designed for expenses business owner and auditors. Our system is manipulating and combining semantic web and machine learning technologies for (i) identifying, (ii) explaining and (iii) predicting abnormal expenses claim by employees of large organisations. Our prototype of semantics-aware employee expenses analytics and reasoning, experimented with 191; 346 unique Accenture employees in 2015, has demonstrated scalability and accuracy for the tasks of explaining and predicting abnormal expenses. |
关 键 词: | 全球商务旅行协会; 全球商务旅行支出; 预测异常费用; 可扩展性和准确性 |
课程来源: | 视频讲座网 |
数据采集: | 2023-01-11:cyh |
最后编审: | 2023-01-11:cyh |
阅读次数: | 40 |