DeepSD:通过单幅图像超分辨率生成高分辨率气候变化预测DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution |
|
课程网址: | http://videolectures.net/kdd2017_vandal_single_image/ |
主讲教师: | Thomas Vandal |
开课单位: | 视频讲座网 |
开课时间: | 2017-10-09 |
课程语种: | 英语 |
中文简介: | 大多数关键系统都能感受到气候变化的影响,如基础设施、生态系统和发电厂。然而,当代地球系统模型(ESM)在空间分辨率上运行过于粗糙,无法评估这种本地化的影响。局部尺度投影可以使用统计降尺度来获得,这是一种使用历史气候观测来学习低分辨率到高分辨率映射的技术。根据统计建模的选择,缩小规模的预测在准确性和可靠性方面有显著差异。气候系统的时空特性促使超分辨率图像处理技术适应统计降尺度。在我们的工作中,我们提出了用于统计降尺度气候变量的广义堆叠超分辨率卷积神经网络(SRCNN)框架DeepSD。DeepSD用多尺度输入通道增强SRCNN,以最大限度地提高统计降尺度的可预测性。我们提供了偏差校正空间分解和三种自动统计降尺度方法对美国大陆日降水从1度(100km)降尺度到1/8度(12.5km)的比较。此外,还讨论了一个使用NASA地球交换(NEX)平台的框架,用于缩小具有多种排放场景的20多个ESM模型。 |
课程简介: | The impacts of climate change are felt by most critical systems, such as infrastructure, ecological systems, and power-plants. However, contemporary Earth System Models (ESM) are run at spatial resolutions too coarse for assessing effects this localized. Local scale projections can be obtained using statistical downscaling, a technique which uses historical climate observations to learn a low-resolution to high-resolution mapping. Depending on statistical modeling choices, downscaled projections have been shown to vary significantly terms of accuracy and reliability. The spatio-temporal nature of the climate system motivates the adaptation of super-resolution image processing techniques to statistical downscaling. In our work, we present DeepSD, a generalized stacked super resolution convolutional neural network (SRCNN) framework for statistical downscaling of climate variables. DeepSD augments SRCNN with multi-scale input channels to maximize predictability in statistical downscaling. We provide a comparison with Bias Correction Spatial Disaggregation as well as three Automated-Statistical Downscaling approaches in downscaling daily precipitation from 1 degree (100km) to 1/8 degrees (12.5km) over the Continental United States. Furthermore, a framework using the NASA Earth Exchange (NEX) platform is discussed for downscaling more than 20 ESM models with multiple emission scenarios. |
关 键 词: | 气候变化; 统计建模; 系统模型; 空间分辨 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-13:chenxin01 |
最后编审: | 2023-05-15:chenxin01 |
阅读次数: | 183 |