0


用于图像分类的多模式半监督学习

Multimodal semi-supervised learning for image classification
课程网址: http://videolectures.net/cvpr2010_guillaumin_mssl/  
主讲教师: Matthieu Guillaumin
开课单位: 印度格勒诺布尔-罗纳-阿尔卑斯
开课时间: 2010-07-19
课程语种: 英语
中文简介:
在图像分类中,目标是决定图像是否属于某个类别。可以从手动标记的图像中学习二进制分类器;虽然使用更多标记的示例可以提高性能,但获取图像标签是一个耗时的过程。我们感兴趣的是,在给定固定数量的标记图像的情况下,其他信息源如何帮助学习过程。特别地,我们考虑了一种场景,其中关键词与训练图像相关联,例如在照片共享网站上找到的。目标是单独学习图像的分类器,但我们将使用与标记和未标记图像相关的关键词来使用半监督学习改进分类器。我们首先使用图像内容和关键词学习一个强大的多核学习(MKL)分类器,并使用它对未标记的图像进行评分。然后,我们根据标记和未标记图像上的MKL输出值,仅在视觉特征上学习分类器,无论是支持向量机(SVM)还是最小二乘回归(LSR)。在我们对PASCAL VOC’07集合中的20个类和MIR Flickr集合中的38个类进行的实验中,我们展示了半监督方法相对于仅使用标记图像的优势。我们还提供了一个场景的结果,其中我们不使用任何手动标记,而是直接从图像标签中学习分类器。在这种情况下,半监督方法还提高了分类精度。
课程简介: In image categorization the goal is to decide if an image belongs to a certain category or not. A binary classifier can be learned from manually labeled images; while using more labeled examples improves performance, obtaining the image labels is a time consuming process. We are interested in how other sources of information can aid the learning process given a fixed amount of labeled images. In particular, we consider a scenario where keywords are associated with the training images, e.g. as found on photo sharing websites. The goal is to learn a classifier for images alone, but we will use the keywords associated with labeled and unlabeled images to improve the classifier using semi-supervised learning. We first learn a strong Multiple Kernel Learning (MKL) classifier using both the image content and keywords, and use it to score unlabeled images. We then learn classifiers on visual features only, either support vector machines (SVM) or leastsquares regression (LSR), from the MKL output values on both the labeled and unlabeled images. In our experiments on 20 classes from the PASCAL VOC’07 set and 38 from the MIR Flickr set, we demonstrate the benefit of our semi-supervised approach over only using the labeled images. We also present results for a scenario where we do not use any manual labeling but directly learn classifiers from the image tags. The semi-supervised approach also improves classification accuracy in this case.
关 键 词: 图像分类; 监督学习; 学习模式
课程来源: 视频讲座网
数据采集: 2023-06-07:chenxin01
最后编审: 2023-06-07:chenxin01
阅读次数: 23