0


HoORaYs:推荐系统评级距离的高阶优化

HoORaYs: High­order Optimization of Rating Distance for Recommender Systems
课程网址: http://videolectures.net/kdd2017_yao_recommender_systems/  
主讲教师: Yuan Yao
开课单位: 南京大学
开课时间: 2017-10-09
课程语种: 英语
中文简介:
潜在因素模型已经成为推荐系统中一种流行的方法,根据历史用户反馈来预测用户对项目的偏好。大多数现有的方法,无论是明确的还是隐含的,都建立在一阶评级距离原则的基础上,该原则旨在最大限度地减少估计评级和实际评级之间的差异。在本文中,我们推广了这种一阶评级距离原理,并提出了一种新的推荐系统潜在因素模型(HoORaYs)。所提出方法的核心思想是探索高阶评级距离,其目的不仅是最小化(i)同一(用户、项目)对的估计评级与实际评级之间的差异(即一阶评级距离),而且最小化(ii)同一用户在不同项目上的估计评级差异与实际评级差异之间的差异。我们将其公式化为正则化优化问题,并提出了一种有效且可扩展的算法来解决它。我们从几何和贝叶斯角度进行的分析表明,通过探索高阶评级距离,它有助于降低估计器的方差,从而带来更好的泛化性能(例如,更小的预测误差)。我们在四个真实世界的数据集上评估了所提出的方法,其中两个具有显式用户反馈,另两个具有隐式用户反馈。实验结果表明,所提出的方法在预测精度方面始终优于最先进的方法。
课程简介: Latent factor models have become a prevalent method in recommender systems, to predict users' preference on items based on the historical user feedback. Most of the existing methods, explicitly or implicitly, are built upon the first-order rating distance principle, which aims to minimize the difference between the estimated and real ratings. In this paper, we generalize such first-order rating distance principle and propose a new latent factor model (HoORaYs) for recommender systems. The core idea of the proposed method is to explore high-order rating distance, which aims to minimize not only (i) the difference between the estimated and real ratings of the same (user, item) pair (i.e., the first-order rating distance), but also (ii) the difference between the estimated and real rating difference of the same user across different items (i.e., the second-order rating distance). We formulate it as a regularized optimization problem, and propose an effective and scalable algorithm to solve it. Our analysis from the geometry and Bayesian perspectives indicate that by exploring the high-order rating distance, it helps to reduce the variance of the estimator, which in turns leads to better generalization performance (e.g., smaller prediction error). We evaluate the proposed method on four real-world data sets, two with explicit user feedback and the other two with implicit user feedback. Experimental results show that the proposed method consistently outperforms the state-of-the-art methods in terms of the prediction accuracy.
关 键 词: 系统评级; 潜在因素模型; 预测精度
课程来源: 视频讲座网
数据采集: 2023-12-27:wujk
最后编审: 2024-03-06:wujk
阅读次数: 9