0


ESLM:利用语言模型改进实体摘要

ESLM: Improving entity summarization by leveraging language models
课程网址: https://videolectures.net/eswc2024_fajar_firmansyah_language_mode...  
主讲教师: Asep Fajar Firmansyah
开课单位: 2024年上海世博会
开课时间: 2024-06-14
课程语种: 英语
中文简介:
知识图的实体摘要在各种应用中都至关重要。因此,对于许多基于知识图的应用程序来说,实现实体摘要任务的高性能至关重要。目前表现最佳的方法将知识图与文本嵌入相结合,对实体相关的三元组进行编码。然而,这些方法仍然依赖于无法覆盖多个上下文的静态词嵌入。我们假设,将上下文语言模型纳入实体摘要器可以进一步提高其性能。因此,我们提出了ESLM(使用语言模型的实体摘要),这是一种提高实体摘要性能的方法,它将上下文语言模型与知识图嵌入相结合。我们在ESBM 1.2版本的DBpedia和LinkedMDB数据集以及FACES数据集上评估我们的模型。在我们的实验中,ESLM的F度量高达0.591,在六个实验设置中的四个实验设置下,其F度量优于最先进的方法。此外,当使用NDCG指标进行评估时,ESLM在所有实验环境中都优于最先进的模型。此外,上下文语言模型显著提高了我们的实体摘要模型的性能,特别是在与知识图嵌入相结合时。我们在DBpedia和FACES上观察到模型的效率显著提高。
课程简介: Entity summarizers for knowledge graphs are crucial in various applications. Achieving high performance on the task of entity summarization is hence critical for many applications based on knowledge graphs. The currently best performing approaches integrate knowledge graphs with text embeddings to encode entity-related triples. However, these approaches still rely on static word embeddings that cannot cover multiple contexts. We hypothesize that incorporating contextual language models into entity summarizers can further improve their performance. We hence propose ESLM (Entity Summarization using Language Models), an approach for enhancing the performance of entity summarization that integrates contextual language models along with knowledge graph embeddings. We evaluate our models on the datasets DBpedia and LinkedMDB from ESBM version 1.2, and on the FACES dataset. In our experiments, ESLM achieves an F-measure of up to 0.591 and outperforms state-of-the-art approaches in four out of six experimental settings with respect to the F-measure. In addition, ESLM outperforms state-of-the-art models in all experimental settings when evaluated using the NDCG metric. Moreover, contextual language models notably enhance the performance of our entity summarization model, especially when combined with knowledge graph embeddings. We observed a notable boost in our model’s efficiency on DBpedia and FACES.
关 键 词: ESLM; 语言模型; 实体摘要
课程来源: 视频讲座网
数据采集: 2024-08-05:liyq
最后编审: 2024-08-05:liyq
阅读次数: 244