Google Vizier:黑盒优化缩略图服务Google Vizier: A Service for BlackBox Optimization thumbnail |
|
课程网址: | https://videolectures.net/videos/kdd2017_golovin_google_vizier |
主讲教师: | Daniel Golovin |
开课单位: | KDD 2017研讨会 |
开课时间: | 2017-10-09 |
课程语种: | 英语 |
中文简介: | 当实验变得比理解更容易时,任何足够复杂的系统都会充当黑匣子。然而,随着系统变得更加复杂,黑盒优化变得越来越重要。在本文中,我们描述了Google Vizier,这是一个用于执行黑盒优化的Google内部服务,已成为Google事实上的参数调优引擎。Google Vizier用于优化我们的许多机器学习模型和其他系统,并为Google的Cloud machine learning HyperTune子系统提供核心功能。我们讨论了我们的需求、基础设施设计、底层算法以及服务提供的迁移学习和自动提前停止等高级功能。 |
课程简介: | Any sufficiently complex system acts as a black box when it becomes easier to experiment with than to understand. Hence, black-box optimization has become increasingly important as systems have become more complex. In this paper we describe Google Vizier, a Google-internal service for performing black-box optimization that has become the de facto parameter tuning engine at Google. Google Vizier is used to optimize many of our machine learning models and other systems, and also provides core capabilities to Google's Cloud Machine Learning HyperTune subsystem. We discuss our requirements, infrastructure design, underlying algorithms, and advanced features such as transfer learning and automated early stopping that the service provides. |
关 键 词: | Google Vizier; 黑盒优化; 缩略图 |
课程来源: | 视频讲座网 |
数据采集: | 2024-12-25:liyq |
最后编审: | 2024-12-26:liyq |
阅读次数: | 14 |