传播现象网络XSpreading Phenomena NetworkX |
|
课程网址: | https://videolectures.net/videos/NTUcomplexity2017_lees_phenomena... |
主讲教师: | Michael Lees |
开课单位: | 2017年新加坡复杂性科学冬季学校 |
开课时间: | 2017-04-03 |
课程语种: | 英语 |
中文简介: | 图形(或网络)提供数据结构以及图形算法、生成器和绘图工具。NetworkX的结构可以从其源代码的组织中看出。该软件包提供了图形对象的类、创建标准图形的生成器、读取现有数据集的IO例程、分析生成网络的算法和一些基本的绘图工具。大多数NetworkX API是由以图形对象为参数的函数提供的。图对象的方法仅限于基本的操作和报告。这提供了代码和文档的模块化。它还使新手更容易分阶段了解该套餐。每个模块的源代码都很容易阅读,阅读这段Python代码实际上是了解更多网络算法的好方法,但我们已经付出了很多努力,使文档足够友好。函数、方法和变量名是lower_case_underscore(小写,下划线表示单词之间的空格)。 |
课程简介: | provides data structures for graphs (or networks) along with graph algorithms, generators, and drawing tools. The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph objects, generators to create standard graphs, IO routines for reading in existing datasets, algorithms to analyse the resulting networks and some basic drawing tools. Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have put a lot of effort into making the documentation sufficient and friendly. Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names are lower_case_underscore (lowercase with an underscore representing a space between words). |
关 键 词: | 分析生成网络; 数据集; 网络算法 |
课程来源: | 视频讲座网 |
数据采集: | 2024-12-26:liyq |
最后编审: | 2024-12-26:liyq |
阅读次数: | 7 |