ADMM并行新闻报道流量预测Parallel News-Article Traffic Forecasting with ADMM |
|
课程网址: | https://videolectures.net/videos/kdd2016_ioannidis_traffic_foreca... |
主讲教师: | Stratis Ioannidis |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 预测文章的流量(以页面浏览量衡量)对内容提供商来说非常重要。流量增加的文章可以提高广告收入,扩大提供商的用户群。我们提出了一种广泛适用的方法,将元数据和跨文章的联合预测结合起来,该方法涉及通过交替方向乘数法(ADMM)解决一个大型优化问题。我们使用Spark实现我们的解决方案,并在大量文章和预测模型上对其进行评估。我们的结果表明,我们的基于特征的预测既可扩展又高度准确,与传统的预测模型相比,显著提高了预测的准确性。 |
课程简介: | Predicting the traffic of an article, as measured by page views, is of great importance to content providers. Articles with increased traffic can improve advertising revenue and expand a provider’s user base. We propose a broadly applicable methodology incorporating meta-data and joint forecasting across articles, that involves solving a large optimization problem through the Alternating Directions Method of Multipliers (ADMM). We implement our solution using Spark, and evaluate it over a large corpus of articles and forecasting models. Our results demonstrate that our featurebased forecasting is both scalable as well as highly accurate, significantly improving forecasting predictions compared to traditional forecasting models. |
关 键 词: | 新闻报道; 流量预测; 预测模型 |
课程来源: | 视频讲座网 |
数据采集: | 2025-04-06:liyq |
最后编审: | 2025-04-06:liyq |
阅读次数: | 8 |