0


基于决策树和实例的标签排序学习

Decision Tree and Instance-Based Learning for Label Ranking
课程网址: https://videolectures.net/videos/icml09_cheng_dtibllflr  
主讲教师: Weiwei Cheng
开课单位: 会议
开课时间: 2009-08-26
课程语种: 英语
中文简介:
标签排名问题包括学习一个模型,该模型将实例映射到一组预定义标签上的总订单。本文介绍了补充和改进现有方法的标签排名新方法。更具体地说,我们提出了迄今为止广泛用于分类和回归的两种方法的扩展,即基于实例的学习和决策树归纳。这两种方法的统一要素是用于局部估计标签排名预测概率模型的过程。
课程简介: The label ranking problem consists of learning a model that maps instances to total orders over a finite set of predefined labels. This paper introduces new methods for label ranking that complement and improve upon existing approaches. More specifically, we propose extensions of two methods that have been used extensively for classification and regression so far, namely instance-based learning and decision tree induction. The unifying element of the two methods is a procedure for locally estimating predictive probability models for label rankings.
关 键 词: 决策树; 实例标签; 排序学习
课程来源: 视频讲座网
数据采集: 2025-04-25:liyq
最后编审: 2025-04-25:liyq
阅读次数: 6