0


对感兴趣的子组进行排名

Ranking Interesting Subgroups
课程网址: https://videolectures.net/videos/icml09_rueping_ris  
主讲教师: Stefan Rüping
开课单位: 会议
开课时间: 2009-08-26
课程语种: 英语
中文简介:
子组发现是识别数据库中目标属性Y分布偏差最大的前k个模式的任务。子群发现是识别数据中有趣模式的一种流行方法,因为它有效地将统计显著性与模式的可理解表示作为逻辑公式相结合。然而,由于某种原因,一些亚组(即使它们在统计上具有高度显著性)对用户来说并不感兴趣,这通常是一个问题。在本文中,我们提出了一种基于支持向量机排名工作的方法,该方法根据用户的兴趣概念对子组进行排名,并找到用户感兴趣的子组。结果表明,这种方法可以显著提高子组的质量。
课程简介: Subgroup discovery is the task of identifying the top k patterns in a database with most significant deviation in the distribution of a target attribute Y . Subgroup discovery is a popular approach for identifying interesting patterns in data, because it effectively combines statistical significance with an understandable representation of patterns as a logical formula. However, it is often a problem that some subgroups, even if they are statistically highly significant, are not interesting to the user for some reason. In this paper, we present an approach based on the work on ranking Support Vector Machines that ranks subgroups with respect to the user’s concept of interestingness, and finds subgroups that are interesting to the user. It will be shown that this approach can significantly increase the quality of the subgroups.
关 键 词: 数据库; 识别数据; 子组质量
课程来源: 视频讲座网
数据采集: 2025-04-25:liyq
最后编审: 2025-04-25:liyq
阅读次数: 5