首页数学
0


基于隐马尔可夫模型的分层Dirichlet过程

Hierarchical-Dirichlet-Process-based Hidden Markov Models
课程网址: http://videolectures.net/nipsworkshops09_sudderth_hdpbhmm/  
主讲教师: Erik Sudderth
开课单位: 布朗大学
开课时间: 2010-01-19
课程语种: 英语
中文简介:
我们考虑说话者日记化的问题,即将会议的录音分段为对应于各个发言者的时间段的问题。由于不允许我们知道参加会议的人数,因此问题变得特别困难。为了解决这个问题,我们采用贝叶斯非参数方法进行说话人数据化,该方法基于Teh等人的分层Dirichlet过程隐马尔可夫模型(HDP-HMM)。虽然基本的HDP-HMM倾向于过度分割音频数据{创建冗余状态并在它们之间快速切换{我们描述了增强的HDP-HMM,其提供了对切换速率的有效控制。我们还表明,这种增强使得可以非参数地处理排放分布。缩放产生的建筑以求实diarization问题,我们开发了采用Dirichlet过程的截断近似,共同重新采样满状态序列,大大提高了混合速率采样算法。使用基准NIST数据集,我们表明我们的贝叶斯非参数架构产生了最先进的扬声器分类结果。
课程简介: We consider the problem of speaker diarization, the problem of segmenting an audio recording of a meeting into temporal segments corresponding to individual speakers. The problem is rendered particularly dicult by the fact that we are not allowed to assume knowledge of the number of people participating in the meeting. To address this problem, we take a Bayesian nonparametric approach to speaker diarization that builds on the hierarchical Dirichlet process hidden Markov model (HDP-HMM) of Teh et al. (2006). Although the basic HDP-HMM tends to over-segment the audio data{creating redundant states and rapidly switching among them{we describe an augmented HDP-HMM that provides eff ective control over the switching rate. We also show that this augmentation makes it possible to treat emission distributions nonparametrically. To scale the resulting architecture to realistic diarization problems, we develop a sampling algorithm that employs a truncated approximation of the Dirichlet process to jointly resample the full state sequence, greatly improving mixing rates. Working with a benchmark NIST data set, we show that our Bayesian nonparametric architecture yields state-of-the-art speaker diarization results.
关 键 词: 贝叶斯非参数方法; 采样算法; 全状态序列
课程来源: 视频讲座网
最后编审: 2020-06-01:王勇彬(课程编辑志愿者)
阅读次数: 303