高斯过程先验贝叶斯数据融合:一个应用于蛋白质折叠识别Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition |
|
课程网址: | http://videolectures.net/pmsb06_girolami_apfr/ |
主讲教师: | Mark Girolami |
开课单位: | 格拉斯哥大学 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 各种新兴的定量测量技术正在产生基因组,转录组和蛋白质组范围的数据集合,这促使数据集成方法在推理框架内的发展。已经证明,对于计算生物学中的某些预测任务,可以通过集成许多(可能是异构的)数据源来获得性能的协同改进。在[1]中,使用支持向量机(SVM)将蛋白质的六种不同参数表示用于蛋白质的倍数识别。 |
课程简介: | Various emerging quantitative measurement technologies are producing genome, transcriptome and proteome-wide data collections which has motivated the de- velopment of data integration methods within an inferential framework. It has been demonstrated that for certain prediction tasks within computational biol- ogy synergistic improvements in performance can be obtained via integration of a number of (possibly heterogeneous) data sources. In [1] six different parameter representations of proteins were employed for fold recognition of proteins using Support Vector Machines (SVM). |
关 键 词: | 定量测量技术; 计算生物学; 蛋白质折叠识别 |
课程来源: | 视频讲座网 |
最后编审: | 2020-10-14:yumf |
阅读次数: | 64 |