0


人们在大众分类法:从社会共享的元数据链接预测

Folks in Folksonomies: Social Link Prediction from Shared Metadata
课程网址: http://videolectures.net/wsdm2010_menczer_fif/  
主讲教师: Filippo Menczer
开课单位: 印第安纳大学
开课时间: 2010-05-18
课程语种: 英语
中文简介:
Web 2.0应用程序引起了相当多的关注,因为它们的开放性使用户可以创建轻量级的语义支架来组织和共享内容。迄今为止,社交媒体的社会和语义成分的相互作用仅得到了部分探索。在这里,我们关注Flickr和Last.fm这两个社交媒体系统,我们可以将用户的标记活动与其社交网络的明确表示联系起来。我们表明,在社交网络中彼此靠近的用户可以观察到大量的本地词汇和主题对齐。我们引入了一个空模型,该模型在保留用户活动的同时去除了局部相关性,允许我们将用户之间的实际局部对齐与统计效果区分开来,这是由于用户活动的混合和社交网络中的中心性。该分析表明具有相似主题兴趣的用户更可能是朋友,因此仅基于其注释元数据的用户之间的语义相似性度量应当预测社交链接。我们在Last.fm数据集上测试了这个假设,证实了基于语义相似性构建的社交网络比Last.fm基于听力模式的建议更准确地捕获了实际的友谊。
课程简介: Web 2.0 applications have attracted a considerable amount of attention because their open-ended nature allows users to create light-weight semantic scaffolding to organize and share content. To date, the interplay of the social and semantic components of social media has been only partially explored. Here we focus on Flickr and Last.fm, two social media systems in which we can relate the tagging activity of the users with an explicit representation of their social network. We show that a substantial level of local lexical and topical alignment is observable among users who lie close to each other in the social network. We introduce a null model that preserves user activity while removing local correlations, allowing us to disentangle the actual local alignment between users from statistical effects due to the assortative mixing of user activity and centrality in the social network. This analysis suggests that users with similar topical interests are more likely to be friends, and therefore semantic similarity measures among users based solely on their annotation metadata should be predictive of social links. We test this hypothesis on the Last.fm data set, confirming that the social network constructed from semantic similarity captures actual friendship more accurately than Last.fm’s suggestions based on listening patterns.
关 键 词: 语义脚手架; 空模型保留用户; 社会网络
课程来源: 视频讲座网
最后编审: 2020-06-27:zyk
阅读次数: 45