开课单位--澳大利亚国立大学
1
CoCoOn: Cloud Computing Ontology for IaaS Price and Performance Comparison[CoCoOn:用于IaaS价格和性能比较的云计算本体]
Armin Haller(澳大利亚国立大学) CoCoOn: Cloud Computing Ontology for IaaS Price and Performance Comparison
热度:51
Armin Haller(澳大利亚国立大学) CoCoOn: Cloud Computing Ontology for IaaS Price and Performance Comparison
热度:51
2
Machine Learning in Bioinformatics[生物信息学中的机器学习]
Alexander Zien(澳大利亚国立大学) Machine Learning in Bioinformatics
热度:26
Alexander Zien(澳大利亚国立大学) Machine Learning in Bioinformatics
热度:26
3
Relations Betweeen Machine Learning Problems[机器学习问题之间的关系]
Robert C.Williamson(澳大利亚国立大学) Relations Betweeen Machine Learning Problems
热度:26
Robert C.Williamson(澳大利亚国立大学) Relations Betweeen Machine Learning Problems
热度:26
4
The Semantic Sensor Network Ontology, Revamped[语义传感器网络本体,改进]
Kerry Taylor(澳大利亚国立大学) The Semantic Sensor Network Ontology, Revamped
热度:25
Kerry Taylor(澳大利亚国立大学) The Semantic Sensor Network Ontology, Revamped
热度:25
5
dK-Microaggregation: Anonymizing Graphs with Differential Privacy Guarantees[dK微聚合:具有差异隐私保证的匿名图]
Masooma Iftikhar(澳大利亚国立大学) dK-Microaggregation: Anonymizing Graphs with Differential Privacy Guarantees
热度:28
Masooma Iftikhar(澳大利亚国立大学) dK-Microaggregation: Anonymizing Graphs with Differential Privacy Guarantees
热度:28
6
Multiplex Bipartite Network Embedding using Dual Hypergraph Convolutional Networks[基于双超图卷积网络的多重二部网络嵌入]
Hansheng Xue(澳大利亚国立大学) Multiplex Bipartite Network Embedding using Dual Hypergraph Convolutional Networks
热度:85
Hansheng Xue(澳大利亚国立大学) Multiplex Bipartite Network Embedding using Dual Hypergraph Convolutional Networks
热度:85
7
Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series[Radflow:时间序列网络的循环、聚合和可分解模型]
Alasdair Tran(澳大利亚国立大学) Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series
热度:35
Alasdair Tran(澳大利亚国立大学) Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series
热度:35
8
Learning without Concentration[不专心学习]
Shahar Mendelson(澳大利亚国立大学) We obtain sharp bounds on the convergence rate of Empirical Risk Minimization performed in a convex class and with respect to the squared loss, withou...
热度:43
Shahar Mendelson(澳大利亚国立大学) We obtain sharp bounds on the convergence rate of Empirical Risk Minimization performed in a convex class and with respect to the squared loss, withou...
热度:43
9
Intelligent Agents[智能代理]
John Lloyd(澳大利亚国立大学) An agent is an entity that receives percepts from the environment in which it is operating and applies actions to the environment in order to achieve ...
热度:53
John Lloyd(澳大利亚国立大学) An agent is an entity that receives percepts from the environment in which it is operating and applies actions to the environment in order to achieve ...
热度:53
10
Sparse Kernel-SARSA(λ) with an Eligibility Trace[稀疏核Sarsa(λ)一个合格的痕迹]
Matthew Robards(澳大利亚国立大学) We introduce the first online kernelized version of SARSA(λ) to permit sparsification for arbitrary λ for 0 ≤ λ ≤ 1; this i...
热度:497
Matthew Robards(澳大利亚国立大学) We introduce the first online kernelized version of SARSA(λ) to permit sparsification for arbitrary λ for 0 ≤ λ ≤ 1; this i...
热度:497