开课单位--弗劳恩霍夫智能分析与信息系统研究所
1
2
3
4
5
6
7
8
9
10

EEG Coupling, Granger Causality and Multivariate Autoregressive Models[脑电耦合、格兰杰因果关系及多元自回归模型]
Alois Schlögl(弗劳恩霍夫智能分析与信息系统研究所) EEG Coupling, Granger Causality and Multivariate Autoregressive Models
热度:45
Alois Schlögl(弗劳恩霍夫智能分析与信息系统研究所) EEG Coupling, Granger Causality and Multivariate Autoregressive Models
热度:45

Large Scale Learning with String Kernels[使用字符串内核进行大规模学习]
Sören Sonnenburg(弗劳恩霍夫智能分析与信息系统研究所) In applications of bioinformatics and text processing, such as splice site recognition and spam detection, large amounts of training sequences are ava...
热度:55
Sören Sonnenburg(弗劳恩霍夫智能分析与信息系统研究所) In applications of bioinformatics and text processing, such as splice site recognition and spam detection, large amounts of training sequences are ava...
热度:55

Inverse Methods for EEG and MEG Source Reconstruction[脑电和脑磁图源重建的逆方法]
Stefan Haufe; Guido Nolte(弗劳恩霍夫智能分析与信息系统研究所) In this lecture we review the most popular inverse methods for EEG and MEG source reconstruction. Inverse methods can be divided into three different ...
热度:101
Stefan Haufe; Guido Nolte(弗劳恩霍夫智能分析与信息系统研究所) In this lecture we review the most popular inverse methods for EEG and MEG source reconstruction. Inverse methods can be divided into three different ...
热度:101

Machine Learning for Intrusion Detection[入侵检测的机器学习]
Pavel Laskov(弗劳恩霍夫智能分析与信息系统研究所) Intrusion detection is one of core technologies of computer security. The goal of intrusion detection goal is identication of malicious activity in a...
热度:68
Pavel Laskov(弗劳恩霍夫智能分析与信息系统研究所) Intrusion detection is one of core technologies of computer security. The goal of intrusion detection goal is identication of malicious activity in a...
热度:68

A Dynamic HMM for Online Segmentation[在线动态HMM分割]
Jens Kohlmorgen(弗劳恩霍夫智能分析与信息系统研究所) We propose a novel method for the analysis of sequential data that exhibits an inherent mode switching. In particular, the data might be a non-station...
热度:88
Jens Kohlmorgen(弗劳恩霍夫智能分析与信息系统研究所) We propose a novel method for the analysis of sequential data that exhibits an inherent mode switching. In particular, the data might be a non-station...
热度:88

Optimized Cutting Plane Algorithm for Support Vector Machines[优化的切削平面算法的支持向量机]
Vojtech Franc(弗劳恩霍夫智能分析与信息系统研究所) 我们已经开发了一种名为OCAS一个新的线性支持向量机(SVM)训练算法。其计算工作量呈线性变化关系的样本大小。在广泛的实证评价OCAS显著优于现有技术的SVM求解器...
热度:68
Vojtech Franc(弗劳恩霍夫智能分析与信息系统研究所) 我们已经开发了一种名为OCAS一个新的线性支持向量机(SVM)训练算法。其计算工作量呈线性变化关系的样本大小。在广泛的实证评价OCAS显著优于现有技术的SVM求解器...
热度:68

Learning from Network Traffic: Computing Kernels over Connection Content[学习网络流量:计算内核连接的内容]
Pavel Laskov(弗劳恩霍夫智能分析与信息系统研究所)
热度:32
Pavel Laskov(弗劳恩霍夫智能分析与信息系统研究所)
热度:32


Supervised Learning on Matrices with the Dual Spectral Regularization[具有双谱正则化的矩阵的监督学习]
Ryota Tomioka(弗劳恩霍夫智能分析与信息系统研究所)
热度:40
Ryota Tomioka(弗劳恩霍夫智能分析与信息系统研究所)
热度:40
