开课单位--加州大学伯克利分校
1234567>>> 1/7

1
Learning Certifiably Optimal Rule Lists for Categorical Data[学习可证明的分类数据最优规则列表]
   Elaine Angelino(加州大学伯克利分校) We present the design and implementation of a custom discrete optimization technique for building rule lists over a categorical feature space. Our alg...
热度:19

2
Approval Voting and Incentives in Crowdsourcing[众包中的审批投票和激励措施]
   Nihar B. Shah(加州大学伯克利分校) The growing need for labeled training data has made crowdsourcing an important part of machine learning. The quality of crowdsourced labels is, howeve...
热度:17

3
Curriculum CycleGAN for Textual Sentiment Domain Adaptation with Multiple Sources[多源文本情感领域适应的课程周期]
  Sicheng Zhao(加州大学伯克利分校) Curriculum CycleGAN for Textual Sentiment Domain Adaptation with Multiple Sources
热度:41

4
The Stanford Autonomous Helicopter[斯坦福大学自主研制的直升机]
  Pieter Abbeel, Andrew Ng, Adam Coates(加州大学伯克利分校) Stanford's Autonomous Helicopter project pushes the limits of autonomous flight control by teaching a computer to fly a competition-class remote c...
热度:190

5
Reachability and Learning for Hybrid Systems[混合系统的可达性与学习]
   Claire J. Tomlin(加州大学伯克利分校) Hybrid systems are a modeling tool allowing for the composition of continuous and discrete state dynamics. They can be represented as continuous syste...
热度:72

6
The Future of Image Search[ 图像搜索的未来 ]
  Jitendra Malik(加州大学伯克利分校) There are billions of images on the Internet. Today, searching for a desired image is largely based on textual data such as filename or associated tex...
热度:46

7
社会认知心理学
  John F. KIHLSTROM (加州大学伯克利分校) 中文字幕;共25讲;简介:加州大学伯克利分校公开课:社会认知心理学 University of California, Berkeley /courses :Social Cognition
热度:76

8
家庭与夫妇心理学-亲密关系
  Benjamin Karney (加州大学伯克利分校) 中文字幕;共17讲;简介:本课程探究了长期以来人们对家庭夫妇间亲密关系的理解和论断。由于数千年来科学家对亲密关系研究的忽视,当通俗心理学占据了关系学的主...
热度:92

9
Graph Helmholtzian and rank learning[图Helmholtzian和等级学习]
  Lek-Heng Lim(加州大学伯克利分校) The graph Helmholtzian is the graph theoretic analogue of the Helmholtz operator or vector Laplacian, in much the same way the graph Laplacian is the ...
热度:57

10
Sparse modeling: some unifying theory and “topic-imaging”[稀疏建模:统一理论与主题成像]
  Bin Yu(加州大学伯克利分校) Information technology has enabled collection of massive amounts of data in science, engineering, social science, finance and beyond. Extracting usefu...
热度:46
1234567>>> 1/7